ED 073009
AUTHOR Michelson, Stephan
TITLE

PUB DATE CONTRACT NOTE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

INSTITUTION Harvard Univ., Cambridge, Mass. Center for Educational Policy Research.
SFONS AGENCY National Center for Educational Research and Development (DHEW/OE), Washington, D.C.
The Existentialist Reality of Educational Production Finctions (Their Existence Has Preceded Their Essence) . 1 Aug 70
OEC:-0-70-5108 110p.

MF-\$0.65 HC-\$6.58
Cost Effectiveness; *Educational Accountability; *Educational Economics; Educational Finance; *Input Output Analysis: *Mathematical Models; Statistical Analysis; Systems Analysis *Educational production Function

ABSTRACT
This publication is a discussion of the concept of an educational production function, a mathematical formulation of the relationship between inputs and outputs in education. A description of how a production function can direct decision making toward economic efficiency precedes a theoretical discussion of the nature of actual estimation. Several statistical estimations which demonstrate the empirical counterpart of the theoretical discussions are made using one sample of data. The author concludes the paper with a summarization of the work. (Author/SHM)

$$
Y=a+b_{1}^{\prime} x_{1}+b_{2}^{\prime} x_{2}+c_{1} x_{1} x_{2} \cdots
$$

hat; partial dorivalia:o

$$
\begin{aligned}
& \left(b_{1}^{\prime}+c_{1} x_{2}\right) \\
& \left(b_{2}^{\prime}+c_{1} \lambda_{1}\right)
\end{aligned}
$$

Here the response of y to ing cirmits of x_{1} depends on how much X_{2} is present. Other combicatims arise when other fonms are tested. Non-linear relation:hips can be amoximated with higher order polymonals, such as

$$
y=a+b_{1} x_{1}+c_{1} x_{1}^{2}+b_{2} x_{2}
$$

In this casc, $\frac{y}{y}=b_{1}+c_{1} X$; i.c., the response of y to X_{1} depents on how moll X_{1} there is; to hegin with. Typically, the exponent c_{1} in such estimates is nogative but small. The result is that for small values of X_{1}, b_{1}. doninaters, and Y responden positively to increases in X_{1}. As X_{1} increases, the effect of ahded x_{1} diminishes. 5

The matheratial fom of the production equation, then, is crucial for deteminits its partial derivatives. These, in tum, give the infomation we are sechine: an csibmie of the chane in outpat given a speciric amput chane. In lari H, therefore, this discmesion on [unclional foms is contimand.

	5
INTHOUCTION	

Since the conty of sociologisis and economists into educational re-search-which dates from the 1 ate 1950 's-the concept of an "educational production function" has gained ever increasing mention. Yet nowhere is there a clear discussion of what such a function would do if there were one, what its characteristics l:ould be, and how one would go about finding (estimating) one. ${ }^{1}$ In the first Part of this paper, I will discuss the reasons why one might want a mathomatical fommulation of the relationship between inputs and outputs in education. In l'art II I will bricfly discuss soric of the properties of such a fomulation. That discussion winl be the most meager of all, thus failing to fill a gap that has existed from the begiming of the attempts to fit these functions. The reasons for this cont inmed failure will be discussed.

Third, I will present some theoretical discussion about the nature of actual estimation. Much of this discussion is a straightforward transtation of traditional production theory into terms directly relevant to educational production. Some, howerer, is a novel atiompt to deal with a morber of problens; which have been siried by previous reseathers. These inclute the problem of identifying frontier ('best practice") institutions, the problen of multipuc outputs, and the problem of simutameous determination of interredated outputs.

The fourth lart will present some statistical estimations demonstrating the (imitical comicrpari of the heoreljcal discussions of pats ff and 111.
${ }^{1}$ Kershan enl Mele:ens do shelde clearly uses "or such a fometion an (12), and bowles discusses cotination in (1) and (2). These papers do mot discuse many of the jsmes covered helow, hower.

Hoverer, no usefal educationat probation funcian will ho presented hore. Haked, it: is my contention that there never has been even a reasomable mathematical fomanation, not to mention an adequate estimate of sueh a function. Nor will there be for som time 10 come. The reasons for this are found in Parts 1 and IIl below, although the crucial elcment may be detcmining a functional form as discussed in jart II. A fifth section will sumarize the work of the paper. The reader inight be advised to skip to part v first, and then return io part I.

In gencral, a functional rejatimabip betrecn injuts and onfputs in production is expressed thus:

$$
Y=f\left(x_{1}, x_{2}, \ldots x_{11}\right)
$$

Y is a moasurable oulput or index of outputs; ${ }^{2}$ the X_{i} are irputs into the process. Since production adds value to tat materials, the inputs are the factors of production (labor and capital, in quantity and quality), and the output is the value added by these inputs. No account is tallen of the initial value of the matcrials in this formulation. The initial value is expressed in the same wites as the output value, and if the initial value is the same for all obscrved production units, then it makes no difference if one thinks of Y as $y_{t} \cdot Y_{o}$ (output value at the end of the process less output valuce at the begiming), or as Y_{t} (output value at the cand of the process). The differeme is a constant term in the expression f(. . $\left.\dot{x}_{j} . ..\right)$.

Since the raw fiaterials in education are pupils, whose initial values (in output teras) differ, some account must be taken of these differences in education fumetions, However, this is an costimetion prolycen, which poses no difficulty in the comephatiation of the value adicd function. The edu-
 for critic:al values, jn hesentatich shond amoar as value added being a
 discussed in lart 111 of atis pajer'.
fumcion of production impats enfy.
The X_{i} are cle emts of the prohection process derine; the time pericel being considered. Since a sithent in mon-boarding schools spends most of his: time not at school, then any production ferjod excecting one school day must account for watie alded outside the school. As an example, consider the output Y to be the incroment to vocabulary betieen the $3^{\text {th }}$ and $12^{\text {th }}$ grades. The conceptanly correct cducational production function would adjust inputs for differences among pupils in vocabulary at the $9^{\text {th }}$ grade, and consider jtems outside the school--say literacy of parents-as an input to the production process durins the high school years. Thus varialies describing the "social ciass" of pupils serve tho conceptually separate functions: They might correct for differnces on entry to the production jeriod, or for output production during the production period, but not at scl:ool. This distinction js crucial. To the extem that output differences are due to differences in production during the period wader consideration, then programs to get more resources to children who have far onside-school resources, preferably during the tines the other childeren are getting the outside-school resources, would have in obviously good chance of success. To the exirnt that diflemenes in finat output are due to differences in initial value of the ompat peasure, a different prohncion process entirely may be called for. ${ }^{3}$ Nul we foul little abome this procese.

[^0] the signs of j ; first parial derivatives, $\mathrm{O}_{\mathrm{i}}^{\mathrm{Y}}$:
$$
y=\stackrel{+}{f}\left(\stackrel{+}{\lambda_{1}}, \stackrel{\bar{x}}{2}^{\dot{x}_{3}} \ldots\right)
$$

A partial derivative indiantes the rate of change of Y when X_{i} is incremented by a smali amount, other variables staying the sabe. A negative sign indicates that an incrase in only X_{i} produces a loss in Y. If many outputs are to be investigated, then it hould not be surprising to fime negative derivatives for some variables vijth respect to some outputs. Thus increasing the average verbal facility of teachers might produce a reduction in manal skills; increasing the bram of as:jstant princijals might reduce soac binds of ereative expression, etc. Yet, of course, such losses might be an acceptibl) "pricc" to pay for gains in other outputs.

The 1ast juportant feature of the production function is actuad estimates of the patial derjvatives. ${ }^{4}$ Thus we have to knos the functionat fom: of the input-onifut relationshijs. For cxample, a lincar function

$$
y=a+b_{1} X_{1}+b_{2} X_{2}+\ldots
$$

has partial derivative b_{1}, b_{2}, che. But a fincar function with multiplicative jnteraction temas:

 by inocaider jnitial and final values of the x_{i} into the catation.

$$
Y=a+b_{1}^{\prime} x_{1}+b_{2}^{\prime} x_{2}+c_{1} x_{1} x_{2} \cdots
$$

has partial derivat ins.

$$
\begin{aligned}
& \left(b_{1}^{\prime}+c_{1} x_{2}\right) \\
& \left(b_{2}^{\prime}+c_{1} x_{1}\right) .
\end{aligned}
$$

Here the response of y to incerments of x_{1} depends on how mach X_{2} is present.
Other combicatims arise when other foms are tested. Non-linear relationships can be appoximated with higher order potymomials, such as

$$
y=a+b_{1} x_{1}+c_{1} x_{1}^{2}+b_{2} x_{2}
$$

In this casc, $\frac{y}{\partial X_{1}}=b_{1}+c_{1} X$; j.c., the response of y to X_{1} depenals on how marh x_{j} there j s; to begin with. Typically, the exponent c_{1} in such cistimates is negative but small. The result is that for small values of x_{1}, b_{1}. dominates, and Y responds positively to increases in X_{1}. As X_{1} increases, the effect of alded x_{1} diminishes. 5

The matheratal fon of the poduction cuation, then, is crucial for detemining its partial derisatives. These, jn tum, give the infomation we are sechine: an cstimate of the change in output given a specirjc input
 tinnol.

[^1]Producion Altorne jus
Guppse wo have ces imated a prometion finction for a school organ zation. That is, lio hate defined an output, and have estimated pational de. rivatives of that output with respect to the jngats affecting that output during the time of protuction. ke are now come tering, changing x_{1}, or, at ternatively, changing; X_{2}. That is, we are considering sone changes in inputs, say a curriculum change on the one hand, a clars sjze change on the other. If the altermatives are construcied so as to cost the sanc, then one might simply choose that which is; the nust "effective." If, in fact, only one output (or an output index) is to be considered, this is peceisely what should happen. So in the simplest example, one wants t.o know the derivatives of an educational production function to choose the nost effective ancher, equal cost altematives.

$$
d Y=\frac{\partial Y}{\partial X_{1}} d X_{1} \text { is compared with } d Y=\frac{Y}{Y} d X_{2} \text {, where } d X_{1} \text { and } d X_{2}
$$ are the (small) equal cost changes just described. binchever calculation is larger indicates the estimate of the better-more productive- option.

Soldom are the allemative: berore us so ciear cut. In the first place, there arce many ontpute, and the "prefersed" cquat cost change might be different depending, on widh cenfunt is considered. In theory, increments to

$$
I_{k}=\ddot{\ddot{j}} \quad l_{i j k} Y_{j k}
$$

 (or districts) prefer difierent outputs. What does this, ㄷ to our ability to cstimate production functions? This question will seapear in Part fll.

1 will continue 10 assume that the problem of judging maltiple out puts, is taken care of. ${ }^{6}$ Stinl assming that we have a well-derincel function, with quantitative estemates of its parial derivatives, we can investigate the more gencral question of choice of progran option. Consider tro options, p_{d} and P_{a}, which do not cost the samo. pre will call the option of hiring teachers with more aldanced degrees than the present average. P_{a} is the alternative option of adling teacher aides to less "qualificel" teachers. Consider the gatio of outputs frum the tho options:

$$
\begin{aligned}
& Y_{d} \\
& Y_{a}^{-}
\end{aligned}
$$

where Y represents an oatput. Consjder the case jn which the ratio of outputs is greater than the ratio of cosis, ${\underset{d}{d}}_{C_{a}}^{c}$. In the first example discussed above,
 ordinarily paid it. To what catent ar hiph schools umhere to hoose different

 to develep in altomat ive bas.
we said "buy fre" lie now have the mare genemal case. When the matio of the outputs is greater than the ratio of the costs, then more value pos dollar is achieved by buying the project: of the manerator. When the incquality is the other way around, the denominator is the better buy.

Suf, zose, then, that aides are in more efficient, but more expensive proposal. ${ }^{7}$ Kemembering that $y_{a}=\frac{y}{y} y_{a} d x_{a}$, where X_{a} is, the input "aides," and $Y_{d}=\frac{\partial Y^{\prime}}{\partial X_{d}} d X_{d}$ whese X_{d} is "degrees," we cam estimate a loss in out put if we reduce the degree jevel of teachers (by replacine retiring teachers with now ones less "qualifed" than the average) enough to save the extra mency. Now we can consider cural cost proposuls in which, where fir d/a indicates the change in Y from reduction in d given a, the addes would produce an additional

$$
\angle Y_{a}
$$

(gain in omiput clue to aides)

10ss
. $\Delta \gamma_{\mathrm{d} / \mathrm{a}}$
(loss in output: due to less qualified teachers)
and hiring new teathers with higher degrecs would produce Y_{d}. If $\left(\Delta Y_{a}-\alpha y_{d / a}\right): s y_{d}$, then the aiders are a betion solution, ame the in-

 onc should compere :uch projects at efficiom sizes first, which is why nere

The problens of choice discussed above have inplicitly atsomed that all ointions were utilized to produce the meximen outpur, or outputs in some detemined proportions. In other words, the question asked was an economic one: what is the best mix of well used resources to produce given outputs. We will hane to probe into the possibility that resources are not always well used. A school compithec, of course, has to balance the gain from greater efficioncy abainst the cost of better manament, in detemining its economically efficient moduction mix.

Man inan output for a given set of resources is technical eficiciency. Two schools with equivalent resources could proluce djfferent outputs with technical efficiency. If re consider th:o outputs, y_{1} and y_{2}, then for a given set of resources, a proluction frontion defines the locus of efficient output combinations. lor a different set of resources, a different frontier is defined. In figure I-1, one su:f, frontior is pictured. It is somorhat different: from an ordinary production frontior in that it assures that for low jevels of cither outpu, there is no tralo off of outputs. That is, inprovenent in one output does not necessitate loss in the other. Where both are beyond minimmateres, the thateofl dess occur. More reseurces deroted to one necessitates a redurtion in ine oiloer ondput.

Techmically eflicient pailnetion simpty means; peduct ion on the production fromice. fechnical jnefricient, then, is a embition whenemore of

FGMRE I-1

A lronlution frontior

Mitpui A
one ontgut could be gamed withoui. loess of any other output. ${ }^{8}$ A fromiter could be convex to the axes. This yould mean that as additional chan size sacrifices are mate in one ompht, Jarger and larger gains can be mede in the other. Althowh this is not inpossil:ic, it leads only to specialization in very few outputs. I do not think this kind of trale-off exists in pinjic schools, although it may be the caso in graduate schools.

Technical efficiency, then, means maximmi (frontior) production, given an injut structure. liconciaic efficjency means choosing the best input structure, given impot output relations and prices of inputs. Production functions are ec ..nice rools: they are used to purchase the correct injuts, assuming they will be managed concecily. It should be obvious that if some inguts are typically mismanaged, then an cx post production fonction analysis may adrocate purchase of other inputs. Yet the truly efficiont solution might be to use the current impats diflowently, deponling on the cost of better mangenent. This could be the case, for exarple, where mathenatics and science teachers are scarce, and other teachers are used in their place. There is no reason to belicve that production of mathemstis onf put is technically efficiont, given the resomecs. We would "find" that, to produce math skills, we must go into the market and "bug" preparcel math teachors. But it could be true that another combintion (s:y, more materats with inforior toaders) is more costereffective. Since prineipeth "coves" the math class, but do not add non-
 mathomics prownem js tednichly inefricient. given the resomes of the

Prodetion on the denhed jinese, then, is ineificient, and these Jines are not actathly fat of the fontics.
 It is then ashed of the prodection furetion analyst. to recoment pro-
 substitution of resources. J wat to stacss that this is not the function of such anatyses, ambly bed large there is littio to say for a recomandation procoeding firen such an approach. ${ }^{9}$ Where there is techmically inefficient pro-duction--and nore inportantly, where some outputs (say, math) are produced (in public schoois) with less technical efficioncy than others (say, reading) -the real managenent alternatives are much grater than the production function analysis inplics.

For this reason, one ought to observe only lecluically efficient schools. One can then detemine both what a cost-effective input mix would be like with gool management, and what roturns could be exjected from betion management (of ineficicion schools) itself. In production theory, this is called oleservation of "best practice" fimus. ${ }^{10}$ In lart IJI I will present a method of isolatime hest pracijec schools, and in part IV 1 will attempt io ackally pick some from my datat. The excrecise is merely illustrative of the problew, and not a good solution to it.

 the prodution fimmon est inatie.
${ }^{10}$ bec Salter (70).

Produrion fumbondyman
I hate shon so fat bet prephetion fanctions contd be a manageme (or policy) 1001 to prome mate precise dofinition of alternatios, and more economic officioncy in productiom. but estimation of such a function must follow detaided technical howledge of input output relationdips mich does not yet exist. A compleice technical description is not necessary: we do not estimate profuction functions from blucprints, but fron data. Stin, the production finction must: anear reasonatide to the experienced educator, or there must be a gool explamation of why jit does not appear so. A short discussion of properties of funclions appears in Part jl, so this discussion about reasonableness can begin.
bmirical estimates are not without value absent the bonledse of foms (and measurement, and a host of other technical items) one would like to have. I mancly distingushing, regression estimates as they have apeared in the diterature from proluction function estimates, which have nover appeared. A 1 inear alditive regresgjua on all obscriations (not just best practico ones), not adjusted for initial viluos of the ontput measure, may give a gool estimate of average retationships. Thus the typical equation:

$$
Y=a+\ldots+b_{j} \lambda_{j}+\ldots+c_{j} Z_{j}+\cdots
$$

where x_{j} are sthan inguts, and

 been mite to di:1 inentish between the offect of home resources darint monsohoul perjois, vs. the effect of boee sesources as producing an interaction - during schoot. ${ }^{12}$ the bownede that howe resumes ceplain more variance
 know ${ }^{13}$ lihat is imporiant is, to discover the production relationships winich do occur in schonels as presently constituted.

A12 of these inportant research topjes can be investigated with current theorctical and statistical tools. Deteminind, these average relationships would be vital for entightemed educatiomal policy. I mily wish to stress that they would not belp in making detaided production decisions, whech involve marymat estimates. Comress and the office of latucation wat to Know what area, on the abeqe, deserves support (say, lietwecn stmater care, pre-school, afterescool programs; teacher training in skills or in bohavior, ctc.). School systons and particularl; school princijals hant to know what to do on the menin. Congress and the office of dincation meed to deal with students in genoral, hat pimipals deal with very particular sudents. A gencral

solution is luma to be jucorrect in my pranes. The aim of poluction funtion amysts, is to be able to determine those places berone the damer is done (or the oppobinity wated). Nerabe regression cotimate are din. portant tooss, but they don't. hej] to anseres that particular grestion.

The noed for discues ins: the mathenical siructure of an olucational production fumetion has alicaty been demonstrated. To estimate changes in output which are expected to vecur with input changes, one noceds to know the actual cquation expressing y^{\prime} as a function of the inputs. For smath changes in imputs, we can approximate est imates of output changes from the derivatives of the uutput with respect to the imputs. There are a nuber of other peperties of functions. Which are jmportant. These poperties exist implicitly in any functionat form. Hence, wether a researeher wishes to discuss these propertics or not, his "model" of input-output relationships in education contajns estmates of them, which may or may not be reasomate. In some forms, in fact, the values of these propertios are iudejentent of the values of the parancters (the vajues discovered empirically by fitting the functional form to the data). Thus imprian propert ies may be unkowingly srecified a miori. I vill discus: the follomins propertios: dejivatives, elasticity of output, elasticity of substituifon. ${ }^{1}$

Derivalives
The first pantial dirditive of Y with respect to X_{i}, $\dot{b} X_{i}$, denotes the instantanotns rate of chemer of with respect lo changes in λ_{j}, where all $X_{j} \neq X_{i}$ are held constam. A: abore, with sman chames in X_{i}, one can ignore

\qquad

change in y , dry b

$$
d y=\frac{y}{x_{i}} d x_{i}
$$

When Y is a simple (no jutcractions) linear function of the X 's, this formia is exact. The coefficient of X_{i}, b_{i}, is its derivative. Thus with linear estimations, researchers give estimates of changes in Y from the above formula without having to calculate Y_{t} (after change) and Y_{0} (before change). And this presentation is valid no matter what the values of the X_{o} and $Y_{0}-$ inputs and output before lajpothetical adjustments.

The independence of the effect on output of an input adjustment from the initial value of that input is an important property of an educational production function. We have already seen two functions of which this is true:
(]) $Y=a+b_{1} X_{1}+b_{2} Y_{2}+\ldots$
(2) $Y=a+b_{1} X_{1}+b_{2} Y_{2}+c_{1} X_{1} X_{2}+\cdots$

In equation 2, dames in X_{1} may affect Y differently depending, on the values of x_{2} ere, but not dea, andine on its om initial value. ${ }^{2}$ One might ask, jas

\prime
 jng effects, the high. the traning tevel initiath. Jt is unreasonable to asmme that tainine bis a linear retationship to output. Humere the "iman"
 - 1 if the teacher has credits beyond the bathe los's degree, the secome is 1 if the teacher has credits bejond the Master's degree. Each variable is zero othemise. ${ }^{5}$ There are a muber of good statistical reasons why non-linearities are better estimated by momincar fome then by sets of binary coded variables, but this does not obviate the fact that sonetimes one can have fovel depentent estimates within the confencs of a simple 1 incor cquation. The erucial element here, then, is whether the definition of the variables is such that the equation defines only one or more than one derivative for a particular policy. A prop, wa of "tmining" can have 1 lio different estimated results, but a program of "credits berond an M.A." can have only one. there is no reason 10 be criticall of a lincar additive fom, per se, oat the question of whether effects of increments $10 x_{i}$ should deneme on the jeved of x_{i}. Using a free defintion of variables, and the jnteraction tenas of Equation 2, we can then heve an aditive form which accomets for dependence of changes in y^{\prime} on both jas om level and He leved of oller variables. Sinco

$$
\begin{aligned}
& \text { 10:5 11:011 13: } \\
& \text { O inn i ! ! }
\end{aligned}
$$

Bincodics M!+cucdis
vill. 1
0
1
1
var.? 0
0

vestigate at leasi one ohres fom:
(3) $y=a X_{1}^{b_{1}}{ }_{X_{2}}^{b_{2}} \quad \ldots$

An extension of this fom is;

$$
\text { (4) } \quad Y=a X_{1}^{b_{1}} X_{2}^{b_{2}} e^{b_{3} X_{3}} \ldots
$$

Form 3 secms to impose a severe interaction restruction: when X_{1} or X_{2} is zero, there is no output. However, this form camot be estimated in the first place where X_{1} or X_{2} is ever zero. Form 4 takes care of this problem by allowing X_{3} to be zero, in which case $\mathrm{c}^{\mathrm{b}_{3} \mathrm{X}_{3}}=1.1$ These equations are estiniated by taking logarithms:

$$
\begin{aligned}
& \left.3^{\prime}\right) \log y=a+b_{1}\left(\log x_{1}\right)+b_{2}\left(\log x_{2}\right)+\ldots \\
& \text { ' } \left.^{\prime}\right) \log y=a+b_{1}\left(\log x_{1}\right)+b_{2}\left(\log x_{2}\right)+b_{3} x_{3} \ldots
\end{aligned}
$$

The derivatives are dependent on the value. of all variables: ${ }^{5}$

$$
\because \dot{\partial y}=\dot{X}_{1}^{\prime}{ }_{1}^{b_{1}}{ }_{1}^{-1} X_{2}^{h_{2}^{2}} \ldots
$$

Thnis fomm is mot weflul when X_{3} a wotes time. Then b_{3} is an estimate

$$
\frac{\partial Y}{\partial X_{3}}=b_{3} a_{1}^{b_{1}} X_{X_{2}}^{b_{2}}{ }^{b_{3} X_{3}}
$$

The change in Y when X_{1} is changed is, then, a function of the original value of X_{1}, and of all other independent variables. Alternatively, it is assumed that each variable interacts multiplicatively with all other variables. This is fairly general, though one could complain that the way in which $\frac{\partial Y}{\partial X_{1}}$ is a function of, Y is restrictive:

Suppose, for example, that a school increased reading scores by 10% by hiring more qualified teachers. The predicted increment to scores from now hiring more experienced teachers has necessarily increased, if the effect of experience was positive to begin with. That is, if the sign of the direct effect of two variables is positive, the sign of their interaction mist be positive. 6 I do not wish to judge this property, merely to expose it.

Eliasticity of Output

The elasticity of output with respect to some input variable X_{i}, which I will denote ϕ_{i}, is a straightforward extension of the first derivative. One might want to define a measure which is independent of the units in which X_{i} and Y are measured. Thus

[^2]$$
\phi=\frac{d Y / \lambda}{d \lambda_{j} / \lambda}: \frac{d Y}{d X_{i}^{\prime}} \cdot \frac{X_{i}}{-Y^{\prime}}
$$

This gives the poportionate chage in Y when X_{i} changes by a small momet. For exampe, if $\phi_{j}=.3$, then a 10 percent increase in X_{i} leads to a 3 percent increase in Y. $11 \phi_{j}=-.3$, then a 10 percent increase in X_{j} Jeads to a 3 percent decri. o in Y. Just ats it was true the the simplo dincar fom defjned a constant derivative, the simple multiplicative fom (equation 3, above) defines a constant elarticity of output. The equation

$$
Y=a X_{1}^{b_{1}} X_{2}^{b_{2}}
$$

forces an estinate of the percentage increase in Y, given an increase in X_{1}, to be b_{1} tines that perentage increase in X_{1}. Where a constant output clasticity is assumed as a mattor of production theory, this gives a convenicnt way of estimating $j t$. Elasticitios given for linear equations are usually calculated by setiing the variables at their means. Though the presentation mat montion "the olasticity," it really means an elasticity". One might want 10 talie cxitreme values of his data, and calculate the range of castjcities implied. Of course, the vilue of Y used in this calculation depents on the values of other variohn . Unless other important varialles in the equation are meativel; correnatci with x_{1}, then the chasticity of output with rospect
 since jnesenemis of x_{1} have a constan absolute offect on incroments to Y, then (barins, whene neative corchations in the data) a linear fanction
 rich shon compred. ith a resource..joor schon.

If this is a sensible prom ris, then defining the adsiticity of out put as the sman for resoure-rich and resource-poor s.iouls is not sensible. On the other hami. it mey be that there are more interactions in rich schools, and the ontut clashicity actmally fnceases (i.c., resource rich schools are better able to utilize a smatl addition worsources than poor schools). If this is the case, the lincar. fom could give even worse estimates of the iscrease in Y for schools at one extrene or the other than the mulijplicative form.

The genozal complusion about elasticity musi be the same as about rates of change: for large juilicy purposes, an aterage estimato is goul chough. Jt kould not scem to matien materially wether one estimates elasticity from a dinear function, with wariabess at their mean valucs, or from a constant clasticity function. For siatement: about cheational preduction, howerer, and for an idea of wat ic capret: in schools with input chara torjstics difforent from the mean, the difference does matler. Dotaincal studies of extrenc schools would be neresemery 10 deterame which functional form best described the chaneses in ontput casticity ower mases oi inputs.

basticity or sumbruan

 is the satio of the repeciane first derivatio of the production function. Recallins that this; for, ion was, in senceal,

$$
y=\int\left(x_{1} \ldots x_{n}\right),
$$

$$
f_{i} f_{j}
$$

This is, as the nome implics, the rate at when one can sulbstitute two inputs without sacrifice or ourjut. ${ }^{7}$ This is an olviously important concept. for (xample, from equation $]$ ahove, the simple linear fom, the : wis betwen i and \mathbf{j} is

$$
\frac{b_{j}}{b_{j}}
$$

Since the derivatives vere indepondent of the Jovels of the variables, so is the marginal rate of tochincal substitution. No mater bow meth or how litite λ_{j} there is, the sute amown of λ_{j} can substitatice for a mit of λ_{i}, leaning; ontput unchaged. benoting the relatite dame in the mets as the ratio of anputs chames as the lanilicity of simpithtion, \because, it is chear that this meabure je jnfinite in the simple linar form, reanders of the parmeters: ${ }^{8}$

 (6):

Before discussing other forms, let us pause to think what this concept: implics, and what $i=\infty$ implics, in cducational production functions. The reason we want to substitute juputs js becanse thejr prices vary firn place to place, or time to there The variation in nominat input mix, however, is not obsorved to vary in adjustiont to these prices. This is prima facie evidace that schons are mot makine ecomomically ofsiciom adjustuents. ${ }^{9}$ On the other hand, it methe that the range of sulstitution possibilities, which we observe is very limilod. To say that the Mxis is constant ($s=0$ over this range may not be a bed aproximation at :1, If a he had mose precise definitions of inputs, st, that wic could actumtely asess the reat range of valation of instructional quatity, from facjlitios, pers influnce, teachess and other adults, then infinite shastimion betwoen jmuts at a constant fate vond be maceptable.

The introhe 1 jon of interation probuces an clasticity of substitution

2 abose:

$$
\begin{aligned}
& \operatorname{MWS}_{x_{1}}, x_{2}=\frac{x_{2}+c_{1} x_{1}}{x_{1}+c_{1} \lambda_{2}} \\
& v_{x_{1}, x_{2}}=\frac{b_{1} x_{1}+b_{2} x_{2},}{2 c_{1} x_{1} x_{2}}, 1
\end{aligned}
$$

This clasticity tends to be smallest in absolute value when x_{1} and X_{2} are present in about equa] momts, and langest when there is more of one input than the other. When c_{1} i.s negative, then some values of x_{1} or x_{2} could podne a newatice rate of subetitution. This mons that rather than give up, say, X_{1} for an increment to X_{2}, one noeds additional X_{1} just to maintain the output. Surely no school wants to have such an input structure. Once again, given the rance of variation we observe, this poss;bility is unlikoly to occur. One might wani to take extreme data values from a data sample. to calculate the rane of rates of substitution implial. This is not possible, of coarse, in the simple finear form.

The jincar fes... with interactions then con produce a positive or negative clasticity of substianion, cief, mind, on the value of the interaction tem (whery x_{1} and x_{2} are delame so that b_{1} and b_{2} are positive). Subsititution

of iuputs. .
 equation's parameters. 10 h high in indicates that substijution can occm ot a rate which does not way mach over a large ranger. This hould sem to be a desirable property of schools. If we had refjned data on inputs, we would not want, to defing thjs situation into existence. On the other hand, as before, we could define virjables as ranges of input measures, and derive different substitution rates for the difforent ranges. The linear form with interactions and higher powers of variables is capable of aseuning paramerdependent vahes of imporiant. statistics, though of course the lype of depondenes is restrictod.

Conclusions:

This bsicf di-cussion of fumetional fonsis of erlucationat production functions has bancly soratched the surface of this subject. It has gonc far comble to sho: the great indoriance of the way in wich variables are defaned. In gencrat, the simpler le: fonctional fom, the bore dejendent statistics derived from the estimater cyuation will he on the particular defintion of varlables. This is true fow the simplost adjustments, like multiplicative

10

 tried to shem that effort in these wo areas, the fom of the fubtion and the
 We ought 10 observe one or tu:. other. We generally ohserve neither.

The reason for this is obvious: There is no theory thich vould lead a researcher to prefer one fon over another, we scaling over another. There are theories of how children (ievelop, but none ahout what we can do to help) them develop. ${ }^{11}$ Indeed, it is not too sitrong to saty that not only do we not know if schools work, and not only do we not know, if they do, how they do: we do not even heve a theory bont it. We have taxomomes, ${ }^{12}$ and averago relationships be tweon impats and outputs which might be useful for some policy puiposes. Bat it is too much to ask of a production analyst that he go wiguided in choice of furctiomal form, wen that fom defines ceriajn characteristice of schools which may be kno.n to be incorrect. Thus] suggest that concators lema a hom by discussing production aspects of weir schools with the analysts. A theory of scheol production could then proceed by suggesting not on7y wich inguts migh be juportan, bit how these inputs are actated in proluctidia. Until some progeres is mate in this direction, there is
 proluction finctions.

${ }^{12} \mathrm{Sec}$, for cample, $1 \times(1)$, or mon (17).

 an claborate discussion, becuse by and large there is litile 1 can do about the poblens raised bere. Sone differences between one city and mati-city

 and (is) non-fronties obser vai ions.

Matiplo Ontp!as an thr. Sibuln \}quadon

Since it is obvor, hat sohoojs produce mony ontputs, one should raise the quest ion: Under blat combitions might it be satisfactory 10 andyan school producion with ratation lo one ionut? 1 will appond to this questicn the
 might hare used factor amalysis lo derince a weighting of the three band aca.

Mind: 11~1

 their resomaces on producing that bompor first, and onty afler some success will they probuce more acadmic athievoent. Between cities, where the anowns of resources are cortainly corretated with social class, ${ }^{3}$ we can tall of an ("ymansion path) of onimats. This is dram as the curved line from the orisin in figure 1H-1. Jt deseribes the Jocus of points on successive fron tiers, that is, the relationshif betwen choice of outputs and total resoures.

Now combibur a reeression estimation using, as an output, only output

 score hed the seltwol produced outjuts in the seme proportions as the nore endowed scheot. Jhe distance $\Lambda_{2}-\Lambda_{1}$ shows the amont of academic umput wich

$$
3^{3} \text { Seo, for ex, }
$$

slope (i.e.; fronticrs are parallel). In that case, when one output was sacrificed for another, the index whatd not change, usine, the deneminator of the sloper ats the vertical anjs weight, the monerator as the horizontal axis weight. This is clearly possible when the production frontior is linear, but it may also be true if the curves are "parallel" aml the expansion path is linear. Thus a linear expension path or parallel strajght line production frontiors are alternative conclitions for using a single output measure, the latter case allowing a nos-linear expansion poch, if we index the outputs appropriately.

The outputs considered here, behavior and academic achicvement, are exaggeratcilly different. Within the sphere "acadumic achievement," however, output differences are casy to observe. Shaycroft, for example, gives us currelations allung 49 difforent output measures, in both the ninth and twelfth grades (as l:oli as test--jetest comelations) scparately for boys and girls. ${ }^{4}$ Anong all the tests, I have jooked closely at the three which she brackets as "Mathomatics 'lest" and the five bracketed as "Inglish Test." The highest correlation within the methematics test battery for an age sex suberoup is .74 for ninth grade boys. At the twelftl, grake, the highest correlation is .64 for the same two tests, the arithnetic reasoning and intermediate high school math. Within the linglesh battery, the highest correlations occur between punctuation and ligelish biage, at . 63 for ninth grade gitirls, . 60 for ninth grade boys, ambl.f for twelfoh grade boys and girls. ${ }^{5}$ hetisen individual tests in
${ }^{4}$ Shaycrurt (21), Tables $6.1 a$ and 6.1 b . In this pecindar froject Talent data there is no information on the race of the chiderem.

5 fivelfoh grade girls actually roiated the punchation tost slightly better with sperlinit, correlation of .55 .
the laghish and mathatics bateries, the highest correlations per subgrow
 mediate high school math, all highest scores in the .60 to . 62 ronge. Thus variations in scores on one tesit are not extremely well related to variations in scores on another. (Average correlations were considerably lower, in the . 40-. 50 ramge.) Whether this is (explainable by inherent "talents," by backgroma, or by resource specialization in schools, it is a good indication that, at the margin, resources (home and school) produce one output or the other. Of course an addition to resources can prodnce more of all outputs. The curved expmasion path in ligure Inl-1 indicates that more resources produce more of both outjuts A and B. Thus one can expect considerable correlation between output scores. But this correlation will be reduced to the extent that different children are in systems with different expansion paths (even if linear), in systoms with schools with varying resources and a single, but non-linear expansion path, or just in hones which stress difforent outputs.

The question remains, howver, if within a city resomees are distributed randomly enough that an expansir a path is essentially linear. Fien in this case schools may, indecel, choose to produce different outputs. Sup-
 ferent amomes of the output. The output measure in the regressision is the hori\%ontas axis, and the sam amem of shood resources are obsered to produce different amemts of that ontut. Suppose the rasom for the maneriat discretion apmas in car data as a 'bacherman' variable. Then some pat of

actuaty indicates that bhavior was acceptate, and therefore the output of the school was; fochical on the measure be are usimg. The social class measure picks up the effect aseribed tomangerial diseretion in figure III-1, and its coofficient is biased. Howerer, the school coefficients may not be affected, according to the assum, tion that this discretion is random with respect to these resources.

This, of course, overstates the case. It is mnitikely that resources are distributed equally within a city. If one can argue that they are more cqually distributed within them among citics, then this at least argues that a one-city analysis will be less biased. Since it is difficult to make that arguncot until one hows what is a resource, and how much of a resource it is; and since the effort here is to make that detemination by estimating production relationships; the whole process secms circular. I will therefore flatly claim that resources are more cqually distributed within than between cities, by social class of child. This makes the one city analysis sce. viable, though not admi rable. As noted in Pari 1 , the best data sample would have already ascertanted the output focus of the schools, and chosen those along a single ray from the origin, covering, a wide range of resources.

In conclu: ion, it femerally appears; inadmissible to investigate one output or onfut ingex with a single equation regression. I will indicate in the
${ }^{6}$ of comse the beremromd of the sthou might be the rejevant measure,
 social cians of the chite js correhated with hat of the sehool. But not all

 with social class. Sec Minhelson (15).
next section how one might accomiakte several outputs. Since the major effort of this paper is directed at cesimetion under different spocifications of the production retationships, and since these points are valid whatever ouner esti. mating proc ures arce cminosel, no hore mention of simultancous est imarion of multiple outputs will be mate after the next: section.

Simaltancous Estimation

In a reccit U. S. Office of Jdaciation volune, llenry levin and I produced simulameons cquations estimations of several outputs, using the Eastmet data. ${ }^{8}$ The minor focus, of our models was an attempt to incorporate attitude variables into the proluction cstimation. ${ }^{9}$ In this case, attitude measures produce test scores, and tesi scores produce attitanks. Althengel this no doubt does not actually occur simultacomply, a shantancous estimntion is required if it occurs within the time period of our investigation. As these are models of school prodertion, from first through the measured grade, cortainly attitudes and onfermes heve intrated, and anco considered "simultancous" within the prodution perjol.

The need for a simitationts estimation of separate ont puts which are
 -.............

 be the wate ivariant watai andure.
would want to control for the protuct ion of some other output in assessinge
 relationship rouhd be enfectel between sume outputs and others, net of the influcnce of the total arome of resemees which induces a purstive refat ionship between outputs. The besit way to do this, as has been indicated, is to choose datat puints ajuns a linear expension path. Otherwise, the procedue for unbiased estimation involves a two-stage regression equation, in which alternative outpits are cumsideral endogenous in an estimate of the curput of interest.

The relationshi.p between outputs in this systom is not a protuction relationship of the sort "a positive self-image produces higher reading, score" and "a higher seading score proluces a positive self-jnage." kather, "given the resources observed, and the amome of output B which these resources ordinarily are associalled will, \qquad anowit of output λ is proluced." Two stage least squares was the alyorithen used to sotve the sinultancous systens; in the refercnces given above. The reader is refered there for more explamation. The foint here is: that, despite the different interpretation, several outputs can be inserted into one equation with proper estimation tech. nieques to derive resenne effects on one output nei of the other.

${ }^{10}$ See pantes (2), for whiple, for some ovianer on this grastion.
we will atso be further abon in est matins: proluction functions, and will
 are produced by their identified equations, and a solvalle set of equations is estimated.

1solatime Frontice schools

We obsorve output in chibhen from several schools, not all techically efficiont. I assume atay the trivial case where the difference between the efficient output and our observed outph is a constant for all schons. ${ }^{11}$ I will discuss the following two exclusive and exhaustive cases:
(1) Inefficiency is random with respect to all the variables we measure. Inefficiency just strikes some schools, or some school districts, independenty of the nominal characteristics of teachers and principats, and independemily of the sociat class, face, nativity, eite, of the school popu1ation.
(2) Thefficicmey is re]atod to some damactorstic which we measure.

In the first case, est inentes of the "Srontier" of production from a given set of inguts will shic: ly spaking not be the frontion at all. It with be a kind of arerabe onijut atamable with an average amount of inefficiency. This is imment in estmation icomigues in wion the "bost fit"

[^3]1ヶGu: J11-2

1J1-2 allusurates a typical regresejoia fit. ${ }^{32}$ However, the dashed dine in dicates a smoth locus of maximan obserations. An "error" mash lo re. ducions from a true fronticer. ${ }^{13}$

This frontior is not fond by tading, all high output. mencrvations. Point "a," for example, has a lower Y value than point "b," jeit "a" is on the frontior, whereas "b" is not. An casy way to find these frontior schools is to estimate the solid line, ani consider only schrols with positive error:

$$
\begin{aligned}
& \hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}+\ldots \\
& c=Y-\hat{Y}
\end{aligned}
$$

defines error.
Divide each X_{i} variabls into ranges, and find the schools with the largest error in cach zange. This gives a series of schools which do better than expected, where by assumption this is not because we have omited some important variable, but because these selioois use thein resources most efficiently.

Since by construction incfliciency was random with respect to the X_{i} characteristics, the sample of efficier: schools should be a randen subsiample of the entire data set. Jifferences in both the 1 cevel of the fromes and jts sidge with respert to any λ_{j} variable inticatc an advance in precision of

12 LThis should be considered a partial relat inship where the other inpats

 to isclate fombior sulwots.

The wetimation. ${ }^{1.4}$
 efficioncy is related to a meabum hamateristic, y X_{j}. Now, honever, there are tromajor problem. Finst, to the exient that X_{j} is in fact a proxy for technical efficioncy, then the remaining observed error mast be measument croor or due to vaiables we have faited to moasure. As mentioned above, this crror is legitimately found on both sides of the "frontier." 'hms choosjng positive errur schoots is a matter of chance, not of precision. luthemore, whe sampe that will result may wot be a random subsample of the original popilation, but may be those schools with high values of $\lambda_{j}{ }^{15}$ A regression estimite on these schuets will hopelessily confuse efficient managent with the specific abilitios of these pupils to pregress with or without efficient mangeam, or anything else that stratifying on x_{j}
 schools had better resource muangent. (for the ontputs considered) than lower chass edools-- then we would have ne woy of estimating a frontice for Jower c:1ass schoul!.

If, in addition, the schools with better resource manderent atse have more ingets, then the exi:icner of hesw inguts with apoar more highty corretated with onfate then hes wound be make average manament. Jt is dif-

 gression lian.
 mntialicmin bu ther rimat i lion.
 this is truc, and hem, it will hereflected more in analyses involvine more them one disurict, them in andyose confinel to one district. The aremats for this moblem of malid-district analy ses have alrealy been presented. If the reat resoures purchated vary between distajels, then the variables representing sucial class, (or, fossjbly, race) will incorpurate the managerial gains in theso districts. Amulti-distrjet study, then, correponds to case numer 2, where techical efficioncy is correlated with variables in the analysis, probably with social chacs, variables. A frontier camot be detemined, nor can the cffecis of "social class" variables be jntenpreted.
lithin a district, as 1 haro areued, the situation appears to be closed to case number onc. Pribeipals are probably aproxinately rantomly dist ributed with rexpect to theis techmical manacerial ability. An attempt to tocate truc frontior schools apears in part iv of this paper.

 (on this sample, and aten the firei resutis us ine a varicty of fometional foms. In the section, bati: follow fwill (J) disense the origin of the

 this ofpermemation.

Tu. Intusworn

$$
?_{101} \text { fol| cilin1a: } \vdots \cdots(;)
$$

 no joint dis the authors contend that they bise estimating. functional canal
 ficjolity fest. They reported amuse associations, mot estimates of probletion fund: ions.

The major differeme belem the work reportcil here am most other work leith this data is the derision to use one city on ty. The effect or this

]atiomnlifs. loos example:

One void hate to mater ane that the school characteristics

\because

There is no way to know in what year a pupil transferred into the school he is now in, and of course tracing pupils to other schools would not only have been expensive, but in most cases virtually impossible. ${ }^{5}$ we do know, for our sjxth grade sanple, how many children had been to other schools; the present sample eliminates those that answered that they had been in more than one school. ${ }^{6}$

We divided the sample by race, climinated those children who reported no sex, those in schools with incomplete records, and those in suburbs of Eastmet. ${ }^{7}$ From a city and suburb sample of 4505 children, this left a sample of 1055 black and white children, of which the 597 whites are used here. Of the original 36 Eastmet city schools, 35 could have appeared in the white sample, as only one school was all black. However only 30 schools survived the pruning. Several schools, in fact, are represented by only one child. In previous regres. sions this has not been a major concern, but in this paper it is.

A major problem when one wants to estinate a production relationship is determining the appropriate production wit. If each unit is an observation, then each unit should have equal weight. When we are talking about average relationships facing children, then children are the appropriate unit. Each child is equal weighteal, and his situation is recorded. If many children are in the same situation, but respond differently-i.e., have different output scores, but the same juputs--then the correlation between inputs and outputs

[^4]is reduced. Althongh rescarchers who use individual data as opjosed to gromped data coaplain that their R^{2} are low (l have been known to be among then), it properly is so, for it says that these children are not subject to a fimm relationship indjcating their test score. ${ }^{8}$ Although statistically one likes to have a perfect fit of his regression equations, one does have to wonder morally what kind of a world it would be if we could predict perfectly a child's reading score from knowledge of his social class and school resources. The \dot{R}^{2} we get are high enough. I would be frightened by a more determinate world. ${ }^{9}$

The task at hand is not to estimate relationships averaged over children, but to estimate technical relationships of production. In this case, the production unit is the school. lach school should have equal weight. On the other hand, each child should be allowed to enter his own background. That is, some correction can be made on a per-child basis for differences in quality upon entering the production process, and differences in ability to respond to the production process. As has already been indicated, I can correct fur both of these effects to some extent, but I cannot casily distinguish between them. The following formula weighted each school equally, and each child equilly within cach school:
${ }^{8}$ On the othere ham, there is a freat deal of error in individual scores which is reduced ly gromping. If error dominates the individual child regressions, they are of mo adimitere ho do mot know that this is the casc, however, and mit somone shoms that it is, 1 will cont ine to acepot the logic which calls, for ning the indieidual variations which we can obscrve.
${ }^{9}$ lt would also be frightening to find thati the world is, after all, dinear. I vill gite chomili evinger helow 10 disped that notion, howerer.

$$
W_{i j}=\frac{597}{30 . N_{j}}
$$

where $N_{j}=$ number of childien in school j
$W_{i j}$ tool: the extrene valucs of 19.90 (for the onc-child schools), and . 13 (for the largest school). Some children were thererore weighted over 150 times others. As shockingly explicit as this weighting is, it is not unusual. Those rescarchers who use data grouper by school are doing the same thing, except they ignore intra-school variation indicated by background variables. Unjess they weight their observations by N (or one could argue for $\sqrt{N})$, they are using per-pupil weights similar to those used here.

Production function estimates, then, require a different kind of data set than was collected herc. I am correcting as well as I can for that deficiency. In a survey designed to produce data for production function estimation, we would want to take a representative sample from each observation, to try to get approximately equal-sized samples per school. In one school this might mean sampling 1 in 300 , though in another school the sanple might be 1 in 10 . There is no need to get more observations just because the school is bigger, if it is treated as a prodution tuit. If there are economics or diseconomics of scale, this should be judicated by a scale factor. If different kiads of childrell go to bigg than to fititice schools, this should be corrected for by covariance tectmiguses. But the theory of sampling for production information is, differont from that used in the fors repom, which was jumetigat ing average characteristice of childen. Whale chijlden mast be troated separately, in production function csitimation, or not at all.

Four kinds of variables have been defined. lijest there are control variables for sed and aie. These are binury coded variables. The children are in the sixth grade, where it is a well-known phenomenon that girls do better than hoys on adijevement tests. Students who reported that they were 12 years old or older are separated by a binary variable. ${ }^{10}$

Sccond, there is a set of student background variables. These control for the quality of the input upon entering the production process, for continued production during the period of schooling, and interaction with resources in school. An Index of Possessions, the child's report of his Father's Fducation level, the child's repurt of the munber of People Living in his Home, and his report of whether he attended kindergarten appear as backeround variables. Four school variables are used as production estimates: Teacher Test Score, Teacher's full-time Tcaching Lixperience, Teachers' Racial Preference, and the Principal's report of whether the school engaged in tracking. Teacher's Racial Preference is, as it says, a question which asked what racial composition the teacher preferred. A higher answer indicates preference for whites. The Test Score was a 30 question vocabulary quiz.

The teachers were selected for this sample if they indicated that they tanght in the third throngla fifth grakes. Their individual responses were averaged, and the average appied to cach student. ${ }^{11}$ Teachers in the third

[^5]grade who reported they had not been in this school when the sixth grade students were third graders are not eliminated. There is a bias either way: to eliminate them would make the sample too old and experienced, as there is a good deal of turnover of young teachers. Including them makes the sample too young and inexperienced, as to some extent young teachers replace old. Furthermore, the biases are different in different schools. This means that a really careful data collecting job for production estimates should collect data on teachers who were there, in lower grades, when the students were.

The final variable type is a binary variable which describes a certain anount of interaction. By listing the schools and their characteristics, I was able to discern four in which the school resource measures were somowhat low relative to the social class of the students, and four in which the resources were quite high though the students were of quite low social class. ${ }^{12}$ For each set of schools I defined a binary variable if the student was himself of above average social class, and another variable if he was below. Thus the student's class is interacting with a general description of the match between his school's resources and his peers' social class. Of all these variables, tho survive into this exposition: Hises--Lokes-Mapeer indicates an above average social class student. in a school with low values of resources and middle range of peers. JoSes-likes- - Dopeer jndjeates a below average sturent in a high resource school, with low chass peers.

Means and stamberd devations are given in lable $1 V-1$ for the two output variables and the school variatles. The means in the first two colums are calculated per child. That is, this is not the atorage teacher characteristic, nor
${ }^{12}$ Another group hat high resonice values and middle sociat class.
the average school characleristic, but the teacher or school characteristic which, on the arerage, is faced by an liastmet sample child. The 'Total Sample" colunas refer to the sample of white children in Eastanet city and suburbs with complete school records. The "Regression Sample" colums are averaged over the 597 children who attencled one central city school from the first grade. The statistics presented here are so close because the one-schood only sample in the central city represents higher performing children than the city children in general. Thus the mean scores are lower in the city than in the suburbs, but higher anong one school childsen than more- than-one school children, and these differences about balance out. Similarly, Teacher Test Score is lower in the suburbs than in the city, but higher in the city for these children than for the entire sample. Experience is lower in the suburb, and this difference is not corrected by taking this select sample. Similarly, Tracking is more prevalent in the central city.

The third collumn of Table IV-1 contains the means of the weighted variables as they actually entered the regression equation. These are averages over schools. Apparently the higher scoring chijdren are in larger schools, in this sample, than the lower scoring children. Since, as the comparison of colutins 1 and 2 shows, the pupils are representative of the Eastmet sample, the question arises whether the schools are representative of the Bastmel schools. I have not been able to determine the extent of representativencss for this paper. Since there is no test of the representativeness of the entire Eastmet sample, it is not clear how moch information woutd be gained by knowing how like the Eastret sample the sub-stapice is.

Additional vas iables wijl be defined below, but in all cases they are transfomations of theo variables. What a variable means slould not be confused with its name. The tracking variable, for example, defincs two groups of schools. Thentry-two sichonls, had the value 2 (track for all students), seven the value ((no trackime), and only one betwen. But wat characteristic about these two grous, manes then different is not necessenity the degren of

TABLI: 1 V 1

Means and Standard Deviations of Production Varjables

Easturet City Mites

	$\begin{aligned} & \text { Regression } \\ & -\mathrm{SamN} 1 \mathrm{c} \\ & \mathrm{~N}=597 \end{aligned}$		$\frac{\text { Tota1 Sample }}{N=1727}$		Weighted$\frac{\text { Sauple }}{N}=\frac{597}{50}$	
	Mcan	S.I).	Mcan	S.D.	Meas	S.D.
Verbal Score	35.1	10.1	35.4	10.4	25.3	11.9
Reading Score	23.6	7.1	23.4	7.3	17.8	8.2
Teacher Test	24.7	1.8	24.6	1.7	23.0	2.4
Teacher Experience	15.1	5.1	13.6	5.0	10.8	4.6
Teacher Race Preference	6.9	1.0	7.0	1.0	5.8	1.1
Tracking	1.5	. 8	1.2	1.0	1.5	. 8

tracking. Indeed, all these schools probahly engage in a form of tracking. The difference could be in the princijests who admit it and the prineipals who do not, or in any number of mimagjned characteristics which hapened to be picked up by this classjfication. For this reason, I will follow this convention: lithen I am reforring to the varjables in the equations, I will capitalize them, no mattor what the context. Thus Experience always means the Experience Moasure in my schools, whereas experience means real teaching experience. I will simply avoid beginning a sentence with the word Experience if I mean experience. At times I use different words to mean the same thing, such as Preference for Whites instead of Racial Preference. The meaning should be clear, and the capitalization rule will always apply.

The One City Sample

Most analyses using Flios data use many cities. Some, in fact, like the original presentation by Colcman and his allics, do not even investigate the city representation. ${ }^{13}$ There seem to be good reasons to include a munber of cities in one analysis, and good reasons on the other hand to study one city only. Solic of the differences in results are revealing, and deserve some exposition.

In fart lIf the inarortonce of knowing the focus, the object of the school's education was caplained. Thus, for a crude chample, one would not mix acadmic and vocaliomat or technical high schools in the same production

13 He are never informe for canmple, hom may scheols are yepresented in Colrmans sample of toot stulents, nor, besides jarge regions, where these schools are.
function analysis. ${ }^{14}$ One might expect that different kinds of cities aim at different kinds of outputs. That is, at the high school level-and therefore indirectly at lower levels--the politically dominemt group determines the focus of the school. That this focus i.s real and de[inable and political can easily be seen in cities which change their nature. Brockton, Massachusetts, for cxample, in changing from a bluc-collar to a white-collar city, as the industry changed from shoes to electronics, has had corresponding changes in the focus of its high school with reasonably open political debate.

To the extent that the input structure of a school reflects the aim of that school, then the only problem with including schools of different aims in one analysis is one of interpretation. As a production function, the measure would still be incorrect. As a determinant of average relationships, it would not be bad. For example, suppose schools which triced to place their students into prestigious colleges deliberately hired teachers with acadenice majors in college, and schools which tried to place their graduates in the labor force deliberately hired teachers with education majors. ${ }^{15}$ As an average relationship, we would find that academic majors of teachers are associated with college-type skills-asay, Verbal Score. It would be wiong to asstinc that a sonool which hined nore academic majors would necessarily mroduce as much of these skills, as indicated by doje association, without a conconitant. chance in policy. The estimates, as proluetion estimetes, vould bo biased
${ }^{14}$ burblhead (5), for example, specifically excludes 12 technical and vocational echools, and wes shool for the physically hamicapped, from his analysis of chicago hieh schoots. On the other hand, he excluad only two vocational high schools from his Mlama somple, appo shty mol reconizing that the five degro schools whe also "tedmical" sch, la in thet perulion cuphenism of the South. The loos high school data does not identify the sehool as acalcaje or vowational.
${ }^{15}$ other types of schoots are assumed to fall in the midale.
upwards beciasce they had not accounted for managerial discretion. On the other hand, these particular types of teadhers presumably are hired because they have an effect in the di ection which the school is cmphasizing. Therefore it would still be currect to assume that there would be soine effect on college-type skills from-hiring more acadenic-major teachers, even with no managerial change.

This explanation, however, asserts more rationality and technical competence on the part of school authorities than probably exists. Indeed, John Owen has recently attempted to identify supply and denand characteristics of teachers, to see if he could find if schools deliberately sought "quality" teachers by offering higher pay. He found that this was not the ca:" 16 Thus between cities we might expect the relationship between the focus of schools and their input structures to be essentially random. This could leau to unbiased estimates of real production relationships.

The problem with this argment is that, though as far as school board demand is concerned the characteristics of teachers is not a function of the focus of the school, they still may be so. A blue collar school on a blue collar budget has a smaller supply of acadonic major teachers, and therefore has a structure dominated by education-majors, even if the schoul would like but cannot afford) more acadomic majors. There will be variativin within that school listrict, and a school with more acadenic majors may produce more college trie outputs. bint if this system was pooted with others, then in some other system this same percontage of acakniemajor twothers might produce more college tyo
out.put; and education majoss, would produce less blue-collar output than found in the first school. The result could be no acadinic effect found for academic majors, or blue-collar effect from education majors even though both effects occur in buth districts. ${ }^{17}$

It would be convenient to argue that this dilema disappears in a onecity analysis, because the focus of the schools is constant. As we know, however, this is not the case. In fact, we can be reasonably certain that within the 30 elementary schools in the Fastmet white sa,uple, some schools are more orjented towards producing the skills tested by the E:OS tests than others. The best analysis, clearly, would involve choosing from sever:el citics those schools with common skill goals, and testing the production of those skills. There are, nonetheless, some further arguments for using a one city sample, which can be reproduced from Burkhead: ${ }^{18}$ A great many of the variables whose influence on output is difficult to isolate are held constant for a single city. The lator market for teachers and the market for other f.ctor juputs is reasonably uniforn for the city as a whole and [therefore] a given outlay will pu, hase inputs of sjmian fuality.

Sone aspects of "alministrative responses" may also be mijform within a single large city system.

Since in preparation of the lastmet sample 1 experimented with regression est imates inc:1nding sububm schoots with the fastmet. eity schools, I had a chance to nutice sonce differences in results. One will be stressed here, be-
${ }^{17}$ For a dia,rembat ic exposistion of this problemi, soe Michelson (16), pp. 123-125.

$$
18 \text { Burkhead (5), p. } 39 .
$$

cause it points to an inportant problem of interpretation. The inportance of Teacher Experience--importince defined as regression coefficient, bota cocfficient, or increment to $\mathrm{R}^{2}-\cdot$ is greater in the single city sauple than in the city-suburb sample. There secms to be a good explanation for this, which casts considerable doubt on an interpretation of the Fxpericnce cocfficient as indicating a production relationship.

Suburban systens tend to have younger teachers than central city systems. That is, among districts, social class and experience are negatively correlated. This is only part]y explained by the rate of population growh of the suburbs, i.e., the relative newness of the positions occupied, naturally, by relatively new teachers. 19 The rest of the explanation presumably lies in deliberate policies of suburbs to maintain a turnover in staff so as to minimize the cost of expensive experienced teachers. Given a surplus supply of teachers to sulviban systens, they can operate this way.

Within any system, city or suburb, a positive correlation exisis between teacher experience and pupi] social class. This is due, at least in part, to the well-known seniority choice system: the more senior teachers can choose to fill vacancies in scheols before the new teachers are assigned. This is virtually universally truc; and it is observed to occur. thus the experienced teachers ${ }^{20}$ are found in the schools which produce or from which amanateacademic skills, at least partly bocause they assuciate themselves with children who will, with them or withont them, acpuire these slifis.
\qquad
1.9 see Owen (1.0) for cevidence on this point.
${ }^{20}$ Strjetly spealing, caperience in present system, not: over-al] experience, j s the corred mobute of somiority. Jhese miasures are highly correlated, huwever.

Since this seems to be a deseription of the sys.em at work, we would expect that regression resplits would show liperijence mose associated with output within than between systems. As noted, this is exactly what we do find. The inter-city estimate would therefore be better for detcrmining the actuei production offect of Lxperience than the one-city estimate, For this reason 1 will de-omphasize the strikingly significant relationships between Fixperience and the lest score outputs found below.

This argument does not pertain to any variable other than Experience. To the extent that teachers with higher Test Score want to move to higher class schools, they are perhaps more able to do so between than within districts. By their personal appeal in interviews, they may be preferred in now hiring by the suburban schools. But they would not have seniority in a single district. So the association between Test Score and output Scores of children probably better describes production in one-city estimation, and has more of a component of dejiberate and prior association in the multidistrict analyses. This argment holds for kace preference also, and probably a fortiori. ${ }^{21}$

Simple bincar liquations

The "simple linear" ecpational. Som has been iliplicitly defined as that where the varjables are limarly additive, not transfomed, and not involved in interactions. Since this does not exelude dividing variables into categorics and entering these categores sepmately, the simple Jinear fonn does not neesessarily mem that the relationship between output and the ori-

[^6]ginally coded variable is lincar. For cxample, Experience as a scaled variable might be independent variable X_{\perp} in the following equation:
$$
Y=a+b_{1} X_{1}+b_{2} X_{2}+d_{1} z_{1}
$$
where Y is a school oulput
X is a school resource
Z is a background measure
The effect of an increase in one unit of X_{1} is to increase Y by b_{1} units. However Experience could be a categorized variable, where:
X_{1} is 4-8 years of experience
X_{2} is more than 8 years of experience.

We can no longer consider "a unit increase" in Experience, but must consider a shift of categories. The constant, a, includes the effect of having $0-3$ years Experience. The effect of roving into the 4-8 category is b_{1}, and the effect of moving into the $8+$ category is b_{2}. Tims in terms of the scaled Experjence variable, non-lincar effects are allowed for. In the equations presented here, I do not take advimace of this possibility, and present scaled variables for inherently scaled measures.

As nentioned in the section describing the data sample, I will add two binary coled "interaction" variables. Being in the category defined by the interaction gives a child a value of 1 , and not being in that category〔ives him the value of: 0 . Hes coefficient, then, indicates the gain or loss in output, other things cqual, from beines in that eategory, i.c., from having that particular type of interaction.

Two equations are prosented in Jable $\mathrm{JV}-2$, in a fomat which will be continued throughout this l'ant of the paper. The coofficients are listed in a colmm, and malemeath cach coofficient is its standard error. The standard error is essentialdy an estimate of the standard deviation of the random error around the regression coefficient. If this standard deviation is "large," then there is a great deal of crror, and the coefficient may well not be what the estimate says it is. "Large" can be defined in temns of the coefficient itsclf, implicjtly testing whether the orror is such that the true coefficient may likely be zero, the estimated coefficient being a result of sampling crror. A convenicnt rule of thumb is to reject a coefficient if it. is smaller in absolute value than its standard error (i.e., if zero lies within one standard error of the estimate of the coefficiont). Almost all coefficients presented will be larger than their standard crrors.

Random error is assumed distributed according; to the nomal distribution, or "bell-shaped" curve. The bulk of the error lies close to the mean. In fact, less than 5 percent of the error is more than two standard errors from the mean. Thus if the coefficient (in absolute value) is more than twice its stimdard error, it is highly impobable that the true coofficient is zero. "True" here does not refer necessarily to the real production relationship, but the coefficient which would be found if what we measure as crror is truly randoin, and we sampled 100 percent of the relevant popatation.

The dependent variables; or outputs of produetion, are Verhal Score ant keadjng seore of these sjeth grate children. The first iwo colums of Table J'- 2 lict. the equations for these tho variables, the specification of the: cquations (i.er, which valiahtes are incluked) dijfering; because of the

statistical considerations (the coefficients relative to their standard errors) just discussed. I see no theoretical reason why people In Home should be related to the Verbal. Scorc of. the children, but not to Reading Score; nor Teacher kiace preference nor whether the child went to Kindergarten. One could argue, after the fact, that this makes some sense, but 1 had no particular expectation a priori about these variables. Similarly, whatever it is that the Tracking variable indicates secms related to Reading, but not to Verbal Score of these children, although I have no theoretical explanation for this. ${ }^{22}$ At the botion of these first two columens is the constant of the equation (a), and the R^{2}, or measure of the percentage of variation in Y which has been accounted for by the X_{i} and z_{j}. Although the specification of the variables in the equation did not proceed in an attompt to naximize R^{2}, the algorithm which estinates the paraneters (the coefficients), given the specification, does do so. These coefficients then are the set of coefficients which best explains variations in Y, for the given list of input variables.

The third and fourth colums present "heta Weights." These are the regression coefficients weighted by the relative size of the standard deviations of the input and output variables. One can say "a one standard deviation increase in X_{i} will prodtce a β_{i} standard deviation inctease in $Y^{\prime \prime}$ (assuming, β_{i} is positive). Since the wites of the variables sometimes have

${ }^{22}$ these results show, hemever, the ext reme weahness in most presentations of there analyses which concontrate on one output. The justification often
 lor this sampe, the correlat inn by pupin betwon Reading and Vertal Score was .84; for the emtire lasimet smate, nol stratified by ace, nember of schools atlemere, etc., ofs. Nometheless, hioh commation kes not mean that inputoutput specifications vill be jocentical, nor cren that inputs will have the sanse relatite offect on both outputs.
no particular intuitive meaning, expressing them in tems of Bota weights can be quite helpful. With an uncepresentative sample, as this surely is, the Beta weights are considerably more suspect than the regression coefficients. In addition, one may not care about historical variation: Not "what is the reaction of Y to one standard deviation increase in Teacher Test," but "What would Y be if Teacher Test were at 30 - the maximun" might be the relevant question. The regression coefficients are used to answer this. However, absent prices--which eventually become the cricial element in judging effectiveness of one input vs. another--the Beta weights give some sense of the relative inport of one variable as opposed to another. All equations will present both sets of coefficients, but the discussion will focus on the regression coofficients.

The effects of the control variables for sex and age are striking. Cirls are $1 / 4$ a standard deviation ahead of boys in Verbal Score, and nearly $1 / 2$ a standard deviation ahead on Reading Score, adjusted for social class, age, and access to school resources. The 27 exceptionally old children, adjusted for sex, etce, are virtually a standard deviation below the mean in Verbal Score, and $2 / 3$ of a standard deviation below in Reading Score. ${ }^{23}$ of the backeround variables, kindergarten attendance is quite juportant in tems of gemerat ing verbal Score points, father's facation could be inportant in
${ }^{23}$ lhe equation estimates the mean output measure exactey-except for rownding erow. When the japut variables are set at the ir man levols. The effects reported here consider extrow values of the control variahles, as compared to their mean values. The estimeste of the difference betweon boys, and girls is ohatacel hy setting this variabte at 1 for girls, at ofor boys. The mem of the abe control is .08s, and therefore one can thinle of the dif-

the case of large differences, but fossessions is the most jmportant in temes of observel variation.

Of the school variables, Teacher Test seems the most inmortant, Experience is suspect, for reasuns detajied above. But for what it is worth, two years of experience would seem to "trade" for one Test Score point in producing Verbal Score, and one year of fipperience is worth one test point in producing Reading Score. The shift from average (por pupil) to maximum quality teachers would produce an average of about 5 Verbal Score points--one half a standard deviation-and less than two points-about one quarter of a standard deviation-of Reading Scorc. ${ }^{24}$ Using per-school averages, the gains would be somewhat greater. Teachers who preferred all-white schools would presumably produce about four hore points of Verbal Score than the mean Racial Preference, or two fifths of a standard deviation. The difference in Reading Score between Tracking and Not Tracking would be nearly one half a standard devjation, though the anticipated inprovement of not fracking over the mean would be three quarters of that amount.

The interaction terms included in the simple linear form as simple variables also have striking valucs. The combination of having low background and bejng in a :chool with Jow background will produce eleven points less of Verbal Score than would othemise be predicted, if the school has high resources. That is, these resources secon to affeet other children, but not these particular chitchen. That. could be becouse they do not rececive the high resources in the school, and this varialle corrects for an error in the resource

[^7]variables for these children, or because the combination of their own background culture plus a similar doininant school culture simply swamps the effect which resources has on other children. !!leven children had this characteristic, possibly too few to draw any conclusions about. Thirteen children in thi's sample with higher than average backgrounds were in schools with low resource values and average peers. They did better than the effect of the low resources would have est: mated. This is possibly because they in fact had high resources within their schools, masked by the averaging process. It is also possibly because the culture of the school was not such as to prevent them from learning, and their learning was derived from their background characteristics. Since the effect of within-school resource allocation cannot be separated from that of peer-individual interaction, there is no way at present to choose one interpretation over the other. But the magnitude of these cocfficients suggests that the assignment of these children into separate classifications did in fact reflect some reality, cven if I camnot without being arbitrary explain what that reality is.

Two things which have been emphasized over and over should be more clear now. First, in discussing the "trade" between a year of Experience and a point of Teacher Test Score, no decision could be made on which was a better buy--assuming both represented production estimates--without knowing how much they cost. Second, the idea that there is one rate of trade between these two items, independent of the anomets currently present in a particular school, seems especially far fetched when the numbers are at hand. In this paper I will do nothing to add infomation about prices. However, let us proceed inmediately to consideration of cquations which allow for leve1- dependent estinates of the marginal output effect. of input changes.

Interactions

As discussed in part Il above, the multiplicative interaction term allows an estimate of the cffect of an increnent in one variable to be dependent on the level of another variable present. Needless to say, interaction terms could be defined in tenns of a product of more than two variables, or in categories of interactions. For this demonstration, simple products of two variables have been entered, and equations have been refined on consideration of these variables. ${ }^{25}$ The interaction equations appear in Table IV-3.

- In the Verbal equation, Teacher Test does not appear as a variable except in the intcraction terms. We can calculate the rate of change of Verbal score of students with snall changes in Teacher Test as follows:

$$
\frac{\partial Y}{\partial T}=.165 \text { (Experience) } \cdot \text {-. } 116 \text { (Race Preference) }
$$

It is appropriate to consider the value of this expression at the weighted means, or the average of school means of the variables. This value is 1.10 . The regression coefficient and hence partial derivative of Teacher Test in the simple linear estimate was 1.0 . The standard crror of this estimate was .18 . Thus the value from this equation with interactions, evaluating at the means, is well within one standard error of the value estimated from the simple lincar form, and therefore not statistically distinguishable either by the size of its unite, here. One variable may dominate the interaction variable. The cocfficient will be hy a large variance relative to the other

TABLE $1 \mathrm{~V}-3$

Lincar Regressions with Intcractions

	Rugression Cocfficients		β Weights	
	Verbal	Reading	Verbal	Reading
Sex	$\begin{aligned} & 2.77 \\ & (.69) \end{aligned}$	$\begin{aligned} & 3.61 \\ & (.47) \end{aligned}$. 116	. 221
Age 12^{+}	$\begin{aligned} & -8.47 \\ & (1.16) \end{aligned}$	$\begin{gathered} -3.79 \\ (.85) \end{gathered}$	-. 199	$\cdots .130$
Pcople in Home	$\begin{gathered} -.173 \\ (.12) \end{gathered}$		-. 044	
Possessions	$\begin{aligned} & 1.10 \\ & (.17) \end{aligned}$	$\begin{aligned} & .918 \\ & (.27) \end{aligned}$. 225	. 274
Father's İducation	$\begin{aligned} & .532 \\ & (.14) \end{aligned}$	$\begin{aligned} & .196 \\ & (.098) \end{aligned}$. 114	. 062
Kindergarten	$\begin{aligned} & 3.65 \\ & (.79) \end{aligned}$. 146	
Teacher Test		$\begin{gathered} -1.30 \\ (.41) \end{gathered}$		-. 383
Teacher Experience	$\begin{aligned} & -3.53 \\ & (1.18) \end{aligned}$	$\begin{gathered} -3.62 \\ (.83) \end{gathered}$	-1.363	-2.045
Race Preference	$\begin{aligned} & 4.23 \\ & (4.26) \end{aligned}$. 385	. 035
HiSes-LoRes-Midl'eer	$\begin{aligned} & 3.42 \\ & (1.86) \end{aligned}$	$\begin{aligned} & 1.522 \\ & (1.36) \end{aligned}$. 054	-. 122
LoSes-Hilles-Lol'eer	$\begin{array}{r} -10.20 \\ (1.83) \end{array}$		-. 177	
Tracking		$\begin{gathered} -1.18 \\ (.33) \end{gathered}$		1.972
(Experience) (iest)	$.165$	$\begin{aligned} & .134 \\ & (.036) \end{aligned}$	1.652	. 106
(Tost) (Race Preference)	$\begin{array}{r} -.116 \\ (.091) \end{array}$	$\begin{aligned} & .0252 \\ & (.013) \end{aligned}$	-. 336	. 483
(Experience) (Possessions)		$\begin{aligned} & .0798 \\ & (.01 .3) \end{aligned}$		

from that estimate. In this scnse we can see that the simple linear form may give average estimates of paraneters.

I have selected two schools with near the lowest and near the highest Experience levels with which to investigate the range estimates. Thus the values which I will give below are neither the highest nor lowest values obtainable, to be conservative in the face of a sample and sampling process which leaves much to be desired. Since my school coding is arbitrary and unrelated to the original HEOS code (which, even so, does not identify schools by nane or location, 1 will use my code numbers for this exposition. School \#79, with average Teacher Ixperience of 3.7 years, and school \#86, with average Teacher Experience of 17.5 years, will be the demonstration cases throughout this section.

School \#79 would respond negatively, though hardly at all, to a snall change in average Teacher Test Score. Its derivative is -.10 , indicating that a 1 point gain in Teacher Test Score would produce a .1 loss in pupill Verbal Score, if all other values stayed the sanc. For example this assumes that Teacher Preference for White Students, which is about at the mean of schools, would be unchanged. If preference for whites increased when higher Test Score teachers were hired (these two factors are correlated greater than . 1), then the estimated deeline in lipill Score on account of Teacher Test Score vould be larew, assming these teachers with higher Test Score and greater preforence for Whites vere as equally Experienced as current school \#79 teachers. Of course the direct effect of higher preference is
positive. The correlation between Test Score and Experience is lower than that between Test Score and Race Preference (being less than .2), so random selection of teachers on the basis of their Test Scores might seem to indicate a negative effect on pupils in this school (and with regard to the output "Verbal Score," though wo shall find a negative relationship between Reading and Test for this school, also).

This is not so, as one can easily sce by picturing the distribution of teachers with respect to Expericnce. Picking "randon1y" from a pool of teachers with Test Scores higher than that in school \#79~-which has an average Score highor than the mean school in Eastmet or, for that matter, the nation ${ }^{26}$.. one is picking from teachers also with higher than mean Experience. This is true because of the correlation between Experience and Test Score. Since the school in question is well below the mean in Experience, then the actual net effect of picking teachers with higher than average Test Scores, but otherwise randomly, wi.ll be to incrememt pupil test score.

The point of this discussion is to make clear the limited meaning of the "partial derivative" in assessing policy. It would take a very non-random selection of teachers to actually produce a decline in Pupil Verbal Score: all characteristics but one, Test Score, would have to remain constant. And since these characteristics are extrome values to begin with, there is a natural tendency for them to become less extreme with random sefection. If, on tiee other hiad, school 79 is a school which always gets inexperienced
${ }^{26}$ Colomati, at al. (7) do not actually give the mean leacher Test: Score, but the score of the teactse of the arerage pupil, in Table 2.33.1, page 131. My School 79 has a higher averane than that facing any group of children listed in this table.
teachers,.i.e., teacher selection is not randon, a deliberate policy to increase experience will prove beneficial, even if average Test Score would. deciine. ${ }^{27}$ We cen see this by taking the derivative with respect to Experience:

$$
\frac{\partial y}{\partial \text { Experience }}=-.3 \cdot 53+.165 \text { (Teacher Test) }
$$

At the average Teather Test for school \#79, this value is +.64 , or indicating over six times the gain in Verbal Score for a year's experience than the loss in Verbal Score from a point of Teacher Test score.

Once again, however, we should take account of the fact that a randomly selected teacher witil higher experience will still have a lower test score than the average teacher in School \#79. 28 How low would it have to be to decrease the Verbal score of pupils? Where the derivative is a function of one variable orly, as in this case, we can solve for the level of that variable a which the derivative changes sign (in those cases in which it doos). Setting $\frac{\partial Y}{\partial \operatorname{Exp}}=0$ and solving the cquation imnediately above, we find that Test Score must fall below 21.4 before this expression becuines less than zero. Since this figure is below the average Test score for this sample (or the nation), and since I am sampling only teachers above a minimun level of experience, it would require --.......-
27 This discussion, of course, assumes that I have estimated a real pro-
duction relationship. Fro:a preceding comnts on Experience alove, be clear that I give 1jtule preceding comments on texperjence above, it should fiperience and outputs beine, a production relationsed relationship between procceding, however, to denionstrate the use of prodip. Tinjs discussion is any.

[^8]a negative correlation between lexperience and score to produce an expected Test Score low enough to reduce output. As we know, there is a slight positive correlation between Experience and Test Score. So one could randomly select teachers on the criterion that they be more experienced than those in School \#79, with confidence that this will improve the output of that school. Fur. thermore, such a selection will induce a higher payoff to the already high Test Score present in that school, as seen in the derivative of Verbal Score (of students) with respect to lest Score (of teachers).

Note that all this makes some sense with regard to how schools might actually work. School \#79, this discussion indicates, could profit greatly from a sclection procedure which brought some experience to the school, even at the loss of some Test Score. If onc selected randonly anong applicants with high Test Score, there might be some improvencht also, but this is just because that Test Score is likely to be associated with Experience. If onc selected nonrandomly, for teachers like those in this school but with higher Test Score, the improvement would be small or even negative. The school might be characterjzed as having far above average teachers in temms of their talents, but far beluw average teachers in terms of their abilities to put that talent to use in producing school output. A couple of Experienced teachers, even if not as capable of scoring well on tests, could direct the talents of the inexperienced teachers. There is, in other words, a real interaction between experience and talent, which corresponds to the equation's interaction between lexperience and Test score. Although on the average the school system would use these equations, to look for teachers with higher Score, in this particular case, it should leok for teachers with greater Jxperience.

I should note here that the interactions as defined are the product of school means, not of individual teachers. In fact, the average of teacher interactions will equal the interaction of teacher averages only if there is no correlation between teacher attributes within schools. ${ }^{29}$ Although it is. important to consider the real-world conditions that might produce the significant interaction cocfficients, it is facile and not altogether justifiable to consider them as indicating interaction between different teachers. Without considering the characteristics of the different teachers, there is no way to know if Experience and lest Score interact in that one teacher with both characteristics is a super teacher, or because two teachers, each with one characteristic, complement cach other. To determine this difference, I would have had to go back to the original teacher data, and re-aggregate by school, taking interactions for each teacher, and averaging. When the variables are positively correlated, the average of individual interactions is larger than the interaction of the means; and conversely when negatively corrclated, it is smaller. I would expect that in most schools we values of Test Score and Experience would be positively correlated. I see no reason to expect that they would be positively correlated between schools, but negatively correlated within. However this might not be the case in all schools, and it might be the case to varying degrees. Thus the average of individual interactions would not be a linear transform of the interaction of averages, and could be expected to produce different results. For the purposes of this paper, I felt this point rould not be investjgated further. It does bear kecping in mind, however,

[^9]when it comes to interpreting the results.
We return now to the derivative of the Verbal equation with respect to Test Score, and consider a school with high Experience, \#86. Despite a higher Preference for whites, and consequent negative effect, the rate of increase in Teacher Test Score is 1.93. Thus School \#86, which has an above mean Test Score, could gain a great boost in output from sclection of high Test Score tcachers. This sclection, if random, will reduce the average experience level of the school (which was selected as having a high experience level), and thus reduce the incremental effect of further increases in lest Score. Nonetheless, the licst Score in this school is lower than in School \#79. While the Experienced but lover scoring teachers should be assigned to School \#79, the higher Scoring (if less Fxperienced) new teachers snould be assigned to School \#86.

This discussion has abstracted from price considerations. As Part I of this paper suggested, the cconomic efficiency criterion needs prices for a solution. If a year of lexperience costs more or less than a point of Test Score, then the simple suggestions made above are not strictly relevant. The method by which prices are accounted for was outlined in Part I. However, to the extent that general proluctivity and cost considerations have led to hiring those qualities in teachers which are most cost effective, and there is now a pool of new teachers to be assjgned, the considerations above can proceed without reference to prices. They are policies of resource allocation gren resources. This, we hate seen, is the concept of Technical Efficiency. Jt assumes projer mangencint in Schools \#79 and \#86, after the policy, and in all schools (for estimation purposes) before the policy is
enacted. It is one use to which a good production function could be put. In addition, of course, the derivatives offered here could be combined with price data-which might also be different for different schools-- to determine the most effective resource mix for a given budget. If either the prices facing the schools or their output reactions are different, then different resource allocation docisions apply to different schools.

The derivative with respect to Experience became negative at a value of Test Score not far below the mean. In fact, nine of the thirty schools take on a negative value of this derivative, i.e., would lose output given more experience, and nothing else. At the means of the variables, the rate of change of Verbal Score with respect to Experience is .36. Once again, this figure is close to that of the coefficient in the simple linear regression, .49. In Table IV-4 I have calculated the derivatives from the linear function at the mean values of variables, and indicated how far (in terms of standard errors of the coefficients from the simple lincar equation) this estimate is from the regression coofficient in the simple linear form. In all cases where school resource variables interact with other resource variables, the djfference from the lincar estinate is insignificant. Why the interaction with a background variable ${ }^{30}$ should so differently affect the resource estinate 1 do not know; but this issue will be discussed below.

Before leaving the Verbal Score equation, we might look at its last interaction derivative, that with respect to Race Preference. The equation for this derjvative appears in Tahle N-A. Calculating where it turns negative, we get a rest Score of $36.5-$ on a thirty question test! In other words,

[^10]TABLE $1 \mathrm{~V}-4$
Partial Derivatives from Interaction liquations

Equation

Comparison with
 partial from
 simple linear
 withinations
 (within--standard errors)

Verbal

$$
\begin{array}{lll}
\frac{\partial Y}{\partial T \mathrm{Tcst}}=.165(\operatorname{Exp})-.116\left(\begin{array}{l}
\text { (Race } \\
\operatorname{PrCf})
\end{array}\right. & 1.10 & .56 \\
\frac{\partial Y}{\partial \mathrm{Exp}}=-3.53+.165(\mathrm{Tcst}) & .36 & 1.7 \\
\frac{\partial Y}{\partial \text { RacePref }}+4.23-.116(\text { Test }) & 1.57 & .49
\end{array}
$$

Rcading

$$
\begin{aligned}
& \frac{\partial \mathrm{Y}}{\partial \mathrm{Test}}=-1.30+.134(\mathrm{Exp})+\underset{\substack{\text { (Race } \\
\mathrm{PrCf})}}{.0252} \quad .29 \quad .55 \\
& \frac{\partial Y}{\partial \operatorname{1xp}}=-3.62+.134\left(\begin{array}{ll}
(\text { 'lest })+ & .01 \\
.0798 \text { (losses) } & 5.17
\end{array}\right. \\
& \frac{\partial Y}{\partial \text { Race pref }}=0252(\mathrm{Ixp}) \quad .27 \text { n.c. } \\
& \frac{\partial Y}{\partial \text { posses }^{\partial}}=.918+.0798(1 \mathrm{xp}) \cdot 1.78 \\
& 1.09
\end{aligned}
$$

there is no really negitive effect induced in the return to output from additional Race Preference, as Test Scores are higher. There is a non-linear relationship such that at higher Test Scores the effect of additional Preference for Whites is diminished; but an increnent of the Preference never results in a lower scorc. At the maximun possible value of Test Score, 30, the return to an additional point of Race preference is .75 of a point of pupil Verbal Score. At the mean Test Score, the return (remember, these are white children) to additional White Preference is approximately 1.57 points of Verbal Score, insignificantly different from the sinple linear estinate.

In terms of comparing equations, note first that the cocfficients of the two "interaction" terms which had been entered, because of their form, into the original simple lincar equations, are hardly affected by these multiplicative interactions. Of the other variables not involved in the interaction temis, only Pcople in the Home was particularly affected. The coefficient. in the interaction equation is not significantly different from zero at the generally accepted 5 percent lovel. This variable had originally appeared in the Reading equation also, with non-weighted estimation. ${ }^{31}$ With estimation by weighted regression this variable became insignificant in relationship to Reading, and now with interaction its inportance with respect to Verbal Score is diminished. (ijven the stability of the effects of the other background variables, one is jnelined to ask just what people In the Home is measuring. It is onc of the many questions to which I have no answer, however.

The derivatives from the Reading equation can be calculated, and have been presented for those variables with interaction in Tahle IV-4, above. Once

[^11]again the partial derjvative of the output equation with respect to Teacher Test is negative for School \#79 (-:66), positive for School \#86 (1.25). It is positive at mean values, and very close to the value of the Test coefficient in the simple lincar cquation. Race Preference now can be significantly entered into the Reading cquation. There is no coefficient to compare it to in the reading equation. ${ }^{32}$

The introduction of an interaction between a school variable and a background variable has more policy significance than might at first be apparent. The previous interactions had refined the notion of a derivative, so that the best policy for a particular school depended on the level of resources already at that school. But there was no mention of requiring a different mix of resources for each school depending on the kinds of children in that school. Yet just as teachers interact with each other, so that one's experience might add to another's talent, so teachers and children interact. It might be that some resources are particularly appropriate to some children, other resources to other children. In a previous paper I have developed this idea, calling it "Resource Specificity." The point I an making here is a further development of that concept. ${ }^{33}$
"Specificity" means that di.fferent children react to different resources differently. In gencral this can be tested by asking whether the same
${ }^{32}$ I did specify a siaple Jinear Realing equation with Race Preference to determine a coefficient: It was . 55 , and the two derivat jues diverge by less than one standard error. If a rescarcher had a theory about instruction which included Race preference as an inmortant variable, then he would not pay such obecisance to statistical sjegificance in determining the specification of his
equations.
${ }^{33}$ Ser Michelson (16).
production function describes education for different types of chjldren. These may be by ethnic group, urban-rural background, language in the home, etc. If sonc grouping produces a different relationship between resources and output, then different resources are specific to these groups.

Specificity implies that an interaction occurs between the characteristics which define the group and all school variables. One is best off simply saying that their production relationships are different. In the present case, I am claiming a much more limited interaction. There is, for example, no conflict in sign: Experience is not a positive resource for some children, a negative resource for others. But there could be sone difference between schools which would make more Experienced teachers more effective in some than in others.

If this were a production function, the implication would be that the more experienced teachers function better in interaction with higher social class students. However, notice that the derivative of Experience, at the means, is essentially zero, whercas the derivative with respect to Possessions has increased close to two standard errors (with respect to the simple linear equation). This might be used to strengthen my previous argunent that Experience was reaily a social class variable. On the other hand, two additional factors should be noted here. The fisst is that in this interaction, wnljke the others, there is within school variation. Fach pupil has a possessions index, whereas each child in a school has the same Experience measurc. Though this is truc, I do not see why this argues that possessions should take away the effect of Experience in interaction. The second factor is that, given the units of coding, the values for Experjence were generally two to three, and at times more than four tines the values entered for bossessions. This does struin the task of the single interaction coofficient, to mean the same thins for an increase in
one unit of each variable. On the other hand, the difference between Test Score and Race Preference was as sciere, without such ill effects.

I have, then, no strong explanation for the difference between this interaction and the others, in terms of estimating, at the mean values, the simple linear cocfficient for lixperience. However the important point is made that part of the interaction investigated here is among resources themselves, and part is between resources and children. Given this latter interaction, there is no reason to think that all schools within a district should have the same resources. A good production function estimation would help deteruine which resources are best enployed where.

Non-Jinear Trans fomations

Some non-Jinear fomes can be brought within the estimation capabilities of linear regression by transfomations of the data. Two such transformations have been discussed, and will be presented in this section: parabolic (i.e., second degree polynomial) and logarithmic (or multiplicative). To justify one form or another, one ought to discuss the type of error assumed, though this is seldom done. For example, the multiplicative form assunes that error also has a multiplicative effect. Error is otherwise assuned additive. I have no theoretical basis for assuming error is additive or multi-. plicative and, like my predecessors, will say no more about it.

The equations utilizing squared terms appear in Table IV-5, and their partial derivatives in Table IV-6. It can be seen that adding one tern in the Verbal equation, threc terms in the Reading equation, raises R^{2}, though not by much. The effects of the background and control variables remain fairly much as they were. The effect of Teacher lest is raised in the Verbal equation. As in the interaction equation, it never gets negative, despite the presence of a negative torm in the expression of the partial derivative. At 30 questions correct, the derivative is still +.60 . The overall effect of this transfomation is to raise the estimated effect of an increase of one point of Teacher Test Score for mosit schools.

Teacher Test does not have this property with respect to the Reading out.put. At 30 correct questions, the rate of change of Reading Score with in crenents to Teacher Test Score is -.90 . There is no unique Beta weight given this transfomation, becalse of course the effect of a standard deviation

TABLL IV-5
Wejghted Regressions with Non-Linear Transformations

TABIL: IV-6

Partial Derivatives of Non-Linear fquations

Verbal	
$\frac{\partial \mathrm{Y}}{\partial \mathrm{Test}}=3.362-.092$ (Test)	Evaluated at Means
Reading	

$$
\begin{aligned}
& \frac{\partial Y}{\partial T e s t}=3.054-.132 \text { (Test) } \\
& \frac{\partial Y}{\partial \text { EXperience }}=-.534+.076 \text { (Ixperience) } \\
& \frac{\partial Y}{\partial \text { Yossessions }}=.427+.214 \text { (Possessions) }
\end{aligned}
$$

change in Test Score now depends on what the Test Score was to begin with. From the mean Score, essentially. 23 right, with a standard deviation of 1.8 questions, the effect on Reading Score of a standard deviation increase in Test Score is a .044 standard deviation increase in Reading Score. This is far smaller than the Beta weight from the simple linear regression. The squared term here is clearly compensating for the truncated score, the fact that no score over 30 was possible.

The partial derivative with respect to Experionce has a disappointing form, which remains even in the next section, where non-linear transformations and interactions are combined. I expected that the constant tern wedld be positive, and the level-dependent term negative, jmplying a decreasing relationship between Experience and output. The oppesite signs occur. Below slightly over seven years of Experience the re? acionshin between Reading Score and Expericnce is negative. Siy shools have such low Experience levels, but this group does not include the two schools with the lowest Reac'ing Scores.

The results fros using (Possessions) ${ }^{2}$, howzer, are quite reasonable. The relationship between output and bacl ground would not be linear, it seoms to me, in any carcfully thought out mociel of cducation. Part of this is due to the cumulative advantages of spending six yoars in a home where cognitive skills are stressed and practiced before the schoolirg production cven begins. The whole concept of accumbation of skj11s is interactive, not additive. Consider, as a simple example, the ase of the worl "not," or the whole concept of negation. This does not add one vord to the vocabnlary, but nultiplies all other words and concepts by two. An adjective is not just a word, but is
as many phrases as nowi it goes with; and adverbs count as many times as they go with adjectives. In fact, the cocfficient of Possessions alone is no longer statistically significimt. The effect of possessions on Reading secms to be dominantly multiplicative, even if all it can multiply in this form is itself. It is clearly not multiplicative in relationship to Verbal Score.

Additionally, the effect of background can be expected to be interactive with school resounces, and possibly even with the average background level in the school. ${ }^{34}$. Thu: another part of the non-linearity of the relationship between background and output should be due to production in the production unit (school). A last part, necdless to say, occurs during the production process but not at school.

In Table IV-7 a Reading equation is presented which includes logarithmic transformations. Untransfomed, the coefficients in that table refer to the following equation:

$$
Y=(.165) \mathrm{S} \cdot .30_{\mathrm{e}}-.36 A_{\mathrm{p}} \cdot 5 \sigma_{\mathrm{H}} \cdot 24_{\mathrm{F}} \cdot 0 G_{\mathrm{T}} \cdot 83_{\mathrm{E}} \cdot 17_{\mathrm{e}} \cdot 291_{\mathrm{e}}-.08 \mathrm{~K}
$$

34 This is a chude way of ambraing, "peer orect," however. Without identifying with whom a pupj iss placed in classer, and with whon ho associater, it secms feeble to atempt to jdent ify the influrice of othere chididen oin him. If there are colough ditaren like him, he may associate with then and be influenced by them regardless of the mean jeves of the schoot.

The constant is the anti-log of -1.801 . The three variables which appear as exponents work in the following way: When they have the value zero, the expression can be written without them (since $c^{0}=1$). When they have another valuc (which can only be 1 for age or interaction, 1 or 2 for tracking), the rest of the expression is multiplicd by a constant. They shift the multiplicative constant by a fixed anount. A child age $12+$, for example, is given the value 1 for the age variable, and therefore $e^{-.36}$ for the multiplicative shift. This is .698 . The equation constant then effectively becones (.698) $(.165)=.115$. This implies that, all other things equal, the child 12 years old or older in the sixth grade is scoring at approximate?; 70 percent of the level of other children. It also must mean that any increase in resources will be 30 percent less effective for this child than for other chiidren.

To see this more clearly, consider the derivatives of this equation, as given in Table IV-8. The clerivative, as explained there, retains the constant as multiplier. If we coasider the exponential terms as shifting this constant, then they do so for the derivatives as well as for the equation It is then a part of this functional form that anything which reduces the equational va'ue by a constant percentage, as does the age-shift variable, also reduces the incremental effect of any other variable by the same anount.

By the same argument, the effect of having the specified. Interaction increases the equation (and effect of increases in any other variable) by 33.6 perecnt. The effect of Tracking (as opposed to no Tracking) is to reduce the equation by 17.3 percent from the value it would otherwise have. Tracking, under this equational form, reduces the effectiveness of increases in stiac school resources also bj 17.3 percent.

TABLI: $\mathrm{IV}-7$

-logarithmic Transformation
Eastmet City Whites

	Reading	
	Regression Coefficients	Beta Weights
Log Scx	$\begin{aligned} & -.359 \\ & (.063) \end{aligned}$. 185
Age 12+	$\begin{gathered} .303 \\ (.052) \end{gathered}$	-. 176
Log Possessions	$\begin{gathered} .560 \\ (.032) \end{gathered}$. 544
Log People in Home	$\begin{gathered} .241 \\ (.038) \end{gathered}$. 214
Log Father's Education	$\begin{gathered} .057 \\ (.061) \end{gathered}$. 030
Log Teacher Test	$\begin{gathered} .833 \\ (.183) \end{gathered}$. 164
Log Exjocrience	$\begin{gathered} .169 \\ (.036) \end{gathered}$. 145
HiScs-LoRes-MidPeer	$\begin{gathered} .285 \\ (.099) \end{gathered}$. 005
Tracking	$\begin{aligned} & -.079 \\ & (.02 \mathrm{n}) \end{aligned}$	-. 118
Constant	-1.801	
R^{2}.	. 506	

TABLE: JV-8

Partial Derivatives of Logarithmic Equation

Evaluated
 at
 Means

Reading

$$
\begin{aligned}
& \frac{\partial \mathrm{Y}}{\partial \text { Test }}=.0363 \mathrm{R} \\
& \frac{\partial \mathrm{Y}}{\partial \text { Experience }}=.00736 \overline{\mathrm{R}}
\end{aligned}
$$

Note: Where

$$
\begin{aligned}
Y & =a X_{1}^{b_{1}} X_{2}^{b_{2}} \\
\frac{\partial y}{\partial X_{1}} & =b_{1} a X_{1}^{b_{1}-1} X_{2}{ }_{2}
\end{aligned}
$$

(where X_{2} is constant)

$$
\begin{aligned}
& =\left(_{X_{1}^{b}}^{b_{1}}\right) a X_{1}^{b_{1}} X_{X_{2}^{b}}^{2} \\
& =\frac{b_{1}}{X_{1}} \cdot y
\end{aligned}
$$

when Y is evaluated from values of x_{3} and X_{2}.
At the moans, $Y=a X_{1} X_{2}$. Hence the expressions for the derivative above, whit: atc $\frac{b_{i}}{\bar{X}_{i}} \cdot \widetilde{R}$.

The other coefficients, which are written as variable exponents in the form above, can be interpreted as output elasticities. As noted in Part II, they are here assmed constant. I will compare these clasticities with those calculated from the simple linear equations just below. First, let us look at the value of the derivative at the mean. From Table IV-8 we see that this form leads to low estimates of the derivative. ${ }^{35}$ The mean values through which the regression fit must pass are the geometric means of the variables (the means of the logaritluns of the variables), whereas arithnctic means are used for the table and are appropriate for the linear form. This makes comparisons at the same values difficult. However, since the geometric mean is lower than the arithnetic mean, ${ }^{36}$. the derivative figures would be cien lower. Taking the maximun Teacher Test Score, 30, the derivative (1.09) is about equal to the simple lincar estimate.

The output elasticity can be easily calculated for the simple linear form. Recall that

$$
Y=a+b_{1} X_{1}+\ldots+b_{i} X_{i}+\ldots,
$$

is the faniliar lincar form, and

$$
\phi_{i}=\frac{d Y}{d X}{ }_{i} / Y X_{i}
$$

is the clastocity fomma from part II. Then a one unit change in $X_{i}\left(\mathrm{dx}_{\mathrm{i}}=1\right)$

[^12]causes a b_{i} change in $Y\left(d Y=b_{i}\right)$. This formula therefore reduces to
$$
\phi_{i}=\frac{b_{i} X_{i}}{k}
$$
where the bar denotes the mean, and R is Reading Score. The values from the sinple linear equation are
\[

$$
\begin{aligned}
. \phi_{\mathrm{T}} & =.45 \\
\phi_{\mathrm{E}} & =.20,
\end{aligned}
$$
\]

using the symbols from above. The value of the elasticity with respect to Experience is close to the coefficient from the logarithmic form, but the Test Score elasticity is not close. Using the standard errors from the logarithmic cquation, ϕ_{E} is within one standard error of the constant elasticity estimate, but ϕ_{T} is over two standard errors low. I would not want to conclude, then, that the simple linear form and the logarithuic form reach similar average estimates of statistics. I would conclude that in general the linear forn with interactions or non-linear transformations allows a great deal of flexibility compared with the multiplicative fom, ${ }^{37}$ Therefore 1 will present one Jast set of equations combining these two features.
${ }^{37}$ Bowles (1), for rasons which I cannot fathom, chooses the multiplicative over the simple line:ar fom, not considering the linear fom with interactions. Ne does note some of the disadvantages of the multiplicative fore. particularly that the sign of the interaction between two inputs (their crosspartial derivative) is deteminate, siven the sigms of the first partial derivatives. He dees, not go on to explore the linear form with interaction, in which the sign of the interaction is not constraned.

Final Level-Dcpendent liquations

I have called the general form of an equation in which at least some partial derivatives depend on the levels of some variables, "level-dependent" fonns. In the preceding sections I argued that, considering a very limited set of forms, the combination of high order transformations (squares or higher powers of one variable) and interactions in a linear regression format was convenient compared with the multipicative form. Many more complex considerations have been ignored. Of these, the most obvious is one in which the elasticity of substitution between factors is held constant. This form has becone popular in economics, though at aggregate levels (that is, for a mix of products, not for an industry production function). It is not imnediately apparent that this would be a good restriction for an educational production function, but at least this demonstrates the direction in which future experimental and theoretical work should look before we will be ready to estimate such functions.

I have estimated gencral "level-dependent" equations for the Reading and Verbal outputs. These appear in Table IV-9. In the Reading equation, Possessions and (Possessions) ${ }^{2}$ buth appear. In the Verbal equation, no background variable appears to a power greater than 1. (Teacher Test). appears in both equations, and in both it has a negative sign. As explajed above, this is reasonable, given the trumated Test scores. In addition there is no reason to believe that any relevant talent for teaching which might be neasured by such a Test is linearly correlated with that Test Score. Higher scores on the Test might indicate more talent, but not necossarily jr: equal increments.

The Teacher Test has been interacted with lossessions, as each repre-

TABIL 1V-9

Conbined level-l)ependent Fquations
 Eastmet Ci.ty Mhites

	Regression Estimates		Beta Weights	
	Verbal	Reading	Verbal	Reading
Sex	$\begin{aligned} & 2.675 \\ & (.67) \end{aligned}$	$\begin{aligned} & 3.393 \\ & (.470) \end{aligned}$. 114	. 112
Age $12{ }^{+}$	$\begin{gathered} -9.508 \\ (1.14) \end{gathered}$	$\begin{gathered} -4.413 \\ (.86) \end{gathered}$	-. 223	-. 151
Possessions	$\begin{gathered} -10.422 \\ (1.97) \end{gathered}$	$\begin{gathered} -4.958 \\ (1.40) \end{gathered}$	-2.124	-1.477
(Possessions) ${ }^{2}$		$\begin{aligned} & .142 \\ & (.045) \end{aligned}$. 484
Pcople in the lome	$\begin{gathered} -.137 \\ (.120) \end{gathered}$		-. 035	
Father's Education	$\begin{aligned} & .485 \\ & (.13) \end{aligned}$	$\begin{aligned} & .140 \\ & (.098) \end{aligned}$. 104	. 044
Kindergarten	$\begin{aligned} & 4.246 \\ & (.77) \end{aligned}$. 170	
Teacher T'est	$\begin{aligned} & 4.970 \\ & (1.52) \end{aligned}$	$\begin{gathered} 1.564 \\ (1.20) \end{gathered}$	1.002	. 460
(Teacher Testi) ${ }^{2}$	$\begin{gathered} -.207 \\ (.039) \end{gathered}$	$\begin{aligned} & -.0979 \\ & (.028) \end{aligned}$	-1.830	-1.268
Teacher Experience	$\begin{aligned} & -2.627 \\ & (1.102) \end{aligned}$	$\begin{gathered} -3.403 \\ (.83) \end{gathered}$	-1.014	-1.920
Tracking		$\begin{gathered} -1.735 \\ (.29) \end{gathered}$		-. 180
HiScs-Lokes-MidPeer	$\begin{aligned} & 5.355 \\ & (1.85) \end{aligned}$	$\begin{aligned} & 2.794 \\ & (1.37) \end{aligned}$. 085	. 065
LoSes-Hikes Jopleor	$\begin{aligned} & -3.934 \\ & (2.044) \end{aligned}$		-.068	
Experience - Test	$\begin{array}{r} .125 \\ (.045) \end{array}$	$\begin{gathered} .151 \\ (.034) \end{gathered}$	1.253	2.223
Test - Possessions	$\begin{array}{r} .506 \\ (.086) \end{array}$	$\begin{array}{r} .221 \\ (.06) \end{array}$	2.636	1.681
Test - Race Preforence	$(.016)$. 175	
Constant	-8.66.3	20.534		
R^{2}	. 643	. 565		

sents the most powerful indicator of quality: Test, of school quality, and Possessions, of background. The coefficient secills large, significant at the .1 percent level in both equations, and positive in both equations. If one believes these measures and the multiplicative interaction, then it sems that children who come from high class homes and go to high resource schools do better than the sum of the high class and the high resource effects. Since this already presumably corrects for the triple interactions of high class, low resources and mid peers, plus low class, high resources and low peers, which work in complenentary directions, then the home-school interaction effect is truly spectacular.

The other interactions remain pretty much as we found them before. Experience and Test interact positively, indicating either interaction between Experienced and high lest teachers, or that those teachers with both qualities are super teachers. Given Test Score, the teacher who Prefers Whites is associated with higher verbal Score whites, though considering that the mean score is fur approximately (intempreting liberally) 60 percent white, this might indjeate teachers who want the securjity of a dminantly white school, but don't necessarjly prefer to teach white children. ${ }^{38}$

Scme partiat derivatives for these equations are given in Table IV-10, along with their values at the means. The difierence from the simple linear coefficients is also calculated and given in the last column. These differences

38

was coded as o, mantly white," "half and half," all nouncle 10 , mostly noinhite as 1 , 9 anders as 0 . Prestine that on indjvidual teacher basis there are more score (5.8) woul ,o the mean ceedingly loose : terpretation of this translating 5.8 to percentages is an ex-

TABLE $1 \mathrm{~V}-10$

Partial Jerivatives for Level-1)ependent Equations Eastmet City Whites

Verbal	Evaluated at Mcans	Standard Errors Different from Sinple Linear Coefficient*
- . .		
$\begin{gathered} \frac{\partial Y}{\partial \operatorname{Test}}=4.970-.414 \mathrm{~T}+.1251 \vdots+.506 \mathrm{P} \\ .+.061 \mathrm{R} . \end{gathered}$. 703	-1.6
$\frac{\partial Y}{\partial \text { Experience }}=-2.627+.125 T$. 242	-3.3
$\frac{\partial Y}{5 \text { PoSScssions }}=-10.422+.506 \mathrm{~T}$	1.191	+ . 8

Reading

$$
\begin{aligned}
& \frac{\partial Y}{\partial T \operatorname{cst}}=1.564-.196 T+.1511:+.221 \mathrm{p}-234-1.0 \\
& \frac{\partial Y}{\partial \text { Yiperience }}=-3.403+.151 \mathrm{~T}
\end{aligned}
$$

[^13]are large, and consistently increase the estimated effect of background, decrease the estinnted effect of school resources, as compared with the simple linear equation. The Teader Test derjvatives are negative at 30 questions, holding the other variables constant at their means. In fact, at these mean levels, the Teacher Test derivative turns negative at 24.6 questions for Verbal Score, and 24.1 questions for Reading Score. Can it be that in a school with mean vajues of Experience, Kace Prefcrence and Possessions, adding a teacher with a high Test Score but otherwise average values will reduce the output of the school? Or does it mean, an interpretation I much prefer, that we are still far from estimating a production function?

The R^{2} from these equations are not spectacularly higher than those from the simple linear equations. Each R^{2} increased by less than 10 percent of its initial value. Thus the advantage to such complici.ted forms would seem to lie in presenting a better picture, if they do, of the way in which the inputs are related to the outputs. They do ot markedly increase our ability to cxplain variations in output with these inputs. As noted carlicr, I find this inability to explain much more variance quite comforting: I would not like to live in a world much more deteminate than this.

- One last point should be discussed here. A Beta weight greater than 1 is a rare phenomenon in social data. To think that a standard deviation jncrease in an input could produce more than a standard deviation in an output scoms extrone. One might look fo, an explanation in the relative jnvariance of the output measure, so that a cotiple of rare point: crate this effect. or one might look for collincarity in the input weasures, again an argunent that the relationshit is spurions, a result of the non-representative distribution of error.

Six variables out of 14 in the Verbal equation, and five out of 12 in the Reading equation have Beta's'greater than 1. However, one need not look for spurious statistical artifacts to explain them. The problen is that with transfomations and interactions the Beta weight for one coefficient sinply has no meaning. The Beta's for those variables not involved in these manipulations are nicely behaved (i.e., snall). There are no unique Beta's for the other variables, as explained above. Therefore I have calculated effective Beta weights, at the means, for the threc variables whose derivatives appear in Table IV-10. Thesc appear in Table lV-1. . These are approximate values, calculated from the parijal derivatives.

All the extrome Beta values are explained by this sinple calculation. The resultant Beta weights are far imaller than the Beta's from the simple lincar cquations for the school variables, and greater than the simple linear Beta's for the background varjable. Thus if Beta's are used to measure rel: tive "inuportance," school variables are even less important, relative to background variables, than predicted by the highly averaged simple linear equations. As alvays, whether this means that policics affecting the home cmvironnent are more cost-effective than policies affecting schools cannot be determined from this restilt. But to the extent that these equations are considered more accurate than the simple limear equations, they are also more depressing in temus of leading to effective schuol policies for increased cognitive skills.

Along the Creat Frontior
One of the task promised for this paper was an at tempt to locate schools

TABLL: IV-11
Approximate Beta Weights for Level-Dependent Equations

	Verbal	Reading
Teacher Test	.142	.069
Experience.	.093	.035
Possessions	.242	.624

Note: Derivatives are taken from Table IV-10, and therefore for Teacher Test refer to the interval from onc-hal.f: standard deviation below the mean to onc-half standard deviation above the mean.
at the production frontior, and re-csti ate production relationships with these schools. No pretense was made that this experiment wouid be a success, and I believe it has lived up to its expectations. Fronti. schools were defined by dividing schools into four regions by their average Test Scores: more than one standard deviation below the mean, within one standard deviation below the mean, and similarly for above. Within these categories the schools with the greatest positive residual

$$
R-\hat{R}
$$

from the sinple linear regression were selected as Frontier schools.. Eighteen schools had positive residuals, and of these, seven were chosen. Sixty-seven children were involved, and the sample was re-weighted to give each school equal weight, and cach child equal weight within each school.

The resulting estimated equation appears in Table IV-12. I only used the simple linear form for this experiment. All variables except Scx had coefficients larger than their stancard errors. What would one expect: from Frontier observations? The basic: expectation is that the school variables will have larger regression coefficients. I would have no expectation about background variables, because I an not selecting for home production, but for the most productive schools, controlling for background.

The Teacher lest cocsficient is indecd larger than it was in the original equation. On the other hand, Teacher lixperience and Tracking have reversed signs. Besjdes these two and the insignificant Sed cocfficient, all the other coofficients have incroased. There is nothing special, therefore, about the fest or rficiont. The Beta weights should, be ignored in a sauple which

TNBLE IV-12

Reading Equation for Frontier Schools

	Regression Coefficient	Deta Weight
Scx	$\begin{aligned} & .587 \\ & (1.54) \end{aligned}$. 038
Age 12+	$\begin{gathered} -9.344 \\ (2.50) \end{gathered}$	-. 416
Possessions	$\begin{gathered} 2.172 \\ (.34) \end{gathered}$. 593
Father's Education	$\begin{gathered} .507 \\ (.37) \end{gathered}$. 153
Teacher Test	$\begin{gathered} 1.043 \\ (.28) \end{gathered}$. 464
Teacher Experionce	$\begin{gathered} -1.862 \\ (.44) \end{gathered}$	-. 560
HiSes-LoResources-Midl'eer	$\begin{gathered} 7.167 \\ (3.25) \end{gathered}$. 251
Tracking	$\begin{aligned} & 1.64 \\ & (.97) \end{aligned}$. 221
Constant	-7.100	
$\mathrm{R}^{?}$. 583	

promises nothing in terms of representativeness.
I would conclude that the experiment is totally inconclusive. The students in these schools secll more responsive to just about any change, which is an appealing characteristic which well managed schools should disclose. Few researchers will be convinced that a regression on 67 children better represents production conditions (when well-managed) in Eastment than the 974 white sixth grade children in the original city sample, or the 597 of these who remained in one school from the first grade; or that seven schools represent production characteristics better than the 36 or the original sample. I want to stress that, in the long run, these opinions atout maintaining sanple size will be proved wrong. Some small sub-sample of schools and children will better demonstrate the technical possibilities (within a given burcaucratic structure) than the entire sanple. It seems safe to say, however, that this particular sub-sample has not done so. ${ }^{39}$

Lessons from these Experiments

The first thing to note is that the functional form is important in determining the effectiveness of different policies. .o judge that one resource is educationally helpful on the basis of a simple linear regression might neglect important interactions which could render that resource ineffective in some situations. Though the use of non-1inear transfomations was instructive, probally the most important infomation in the preceding sections came from the

${ }^{39}$ As a post-script 1 will mote that the explanation here, that these figures diverge too much from those found before, seoms anceptionally weak. What meds to be done is to set out the criterial under which one would aceept the sub-sauple results as in fact the frontier relationships. These criteria should probably be independent of comparisons with resultis from the entire sumple. I have not yot undertihen this task, and I consider it a fomidable one.
interaction tents. Teachers interact: Within a school, one might consider the mix of teachers in making new assignments. In fact, iudicial enforcement of racially balanced facultics is a step in this direction: assignment of one teacher is dependent on the characteristics of the teachers already at that school. Although I do not know the educational offect of such assignnent criteria, at least they open the door for other resource-interaction considerations.

In addition, resources interact with backgrounds: 'Seacher assignment should consider the types of children in the school. This is quite an important result. If one were to believe, as many of the educational skeptics try to read from the $1 E O S$ study, that schools contribute nothing to cognitive skills, then one would believe that wealthy suburbanites were foolish in their high per-pupil expenditures. If, on the other hand, the marginal productivity of a dollar expended in a high class neighborhood, in terms of produci.gg cognitive skills, is greater than in a lower class neighborhood, then it appears that these people are particularly sensible. That is what this interaction tern implies. It follows everyday observation: that schools in lower class neighborhoods expend a great deal of cffort in behavioral outputs--under the general heading of "discipline." It follows from a radical analysis which sees schools as places of socialization first, cognitive achievement last: upper class children are already socjalized. This interaction defines the most inportant challenge to the clucational establishucht today: from "cost-bencfit" and other de-hnmanized (but "rational") approaches, an educational production function with a hero-schuol interaction temn like this one will dictate putting money where the pupils are most prepared to use it, where they by and large already
have a great deal. This would not be true only in prices worked the other way--if resources were more cheaply supplied where they are more scarce. But everything we know about prices indicates the opposite, that resources (such as teacher talent) prefer to go where there is already a fund of that resource, and where the students are already prepared to take advantage of it. ${ }^{40}$ The challenge, then, is to use a human calculus in allocating resources, not a monetary calculus: resources should go where they are scarce, even though their marginal effectiveness will be small there.

The practical effect of this interaction is to help explain muckraking studies which show that funds spent on compensatory education are not very productive. Most of the argument against such views has been--rightly--that these funds have been so badly administered that they cannot be said to have gone for real compensatory education. Furthermore, they have been diluted, spread over too many children. The home-school interaction term indicates that a small amount of compensatory program actually reaching a low-income child can be expected to have little cffect. That sane amount reaching a high-income child could have a larger effect. Consider the obvious impact of financing a science fair in an otherwise well-off school district, compared with the incroment to science knowledge from the same amount of funds spent in science education in a low-incone school. The pre-conditions for effectively absorbing such funds are so different, that of course the measured benefit from the fomer project will exceed that from the latter. Yet different chindren are
involved in these two measures of benefit. They are not strictly comparable. A "hunan calculus" would weight higher the small gatn of deprived chillren, than the large gain of the already privileged children.

On the other hand, the final equation did produce results which showed the schools even less effective in producing the cognitive skills measured than we would believe from the simple linear equation. The answer may lic in nonschool prograns, such as day-care centers for young children, extensions of the Police Athletic Jegaue, special after-school programs in conjunction with museons, summer camp programs, ctc. The fact that the cocfficient for possessions seems powerful leaves open the question of what Possessions really is. The facile argument that possessions represents money, so that cash grants to parents will produce reading achievement, I find unsupportable. One would have to posit a production relationship between moncy and cognitive skills. This could run: meney releases the parent's time to be spent with the children, and this time is the actual producer of these skills. Yet the tine of a now poor parent may not be so productive. We certainly don't know that it is from regression cocfficients from parents who have achieved some higher incone status.

The unfortunate 1 roth is that until the actual productive variables are ident:ified, we camot well estimate their costs. And without both production and cost estimates, we canot know what policy might be most costeffective. Add to this the fact that we do not know what form a production relationship wight take, and the discovery in the preceding sections that the fom makes a great deal of difference in tems of estimated effects, then the
lesson of this paper is clear: much more work, theoretical, experinental, and statistical, needs to be dune before wo will be able to rationalize the production of cognitive skills.

A BRIER: CONCIUSION

This paper began with a discussion of the concept of "production functions," and a descript:ion of how a production function can direct decision making toward economic efficiency. This, it was noted, required that the function was derived from technically efficient (well managed) production units. ${ }^{1}$ Where profit making is the force behind the production, one can asstone some degree of teclmical efficiency. This does not apply to public education. ${ }^{2}$ The concept that one should try to isolate efficient schools--those operating or: their production frontier--was outlined, and even tested in Part IV of the paper.

The output focus of the school was taken to be another problem. A single output measure, or even an index, has very limited use in actual production estimation of such conglomerates as the public education system. This is especially true if there is a non-linear expansion path as resources increase, or if schools with different kinds of children (by social class, urbanness, ethnicity, etc.) aim at different outputs. This argument appeared in part Ill.
liven with schools, with a common output goal, and a suitable measure of that goal; even if the finms were observed to be technically efficient, other problems excur. Previous attomes to statisticallv relate cognitive output to
\qquad
${ }^{1}$ Alternatively, it has been juplicd, indefficient production can be as. sumed to be $t_{\text {pe: }}$ rufe, and the cost of efficient mangement should be part of the economic decinion.
${ }^{2} 11$
for production function though that priate education is the place to look observations of pour backerome chi die probicm here, of course, is that 1.00 few be found to disentimgle these tho influm in resource-rich grivate schools could
school inputs have rot separated out the children who were not ir. that school in previous years, hence not actually associated with those inputs. If lower class children are more likely to change schools, then once again it may be extremel.y difficult to make any estimates about input-output relationships which affect them. Also, the range of administ tive jurisdictions in the data sample may affect the results. Thus it was argued that within one city, teachers with seniority can associate themselves with higher output children, presenting an upward bias to the "production" estimate unless made from a suitably identified and estimated simultaneous model. On the other hand, multi-city, and especially city and suburb samples allow the same kinds of associations with other teacher (and principal) qualitics. A teacher with experience can move well within a city. A teacher with high IQ, social ease, or whatever else is desired by suburban education establishments may move more casily between cities. These issues were discussed in the beginning of Part IV.

Even if all these problems are considered solved, the mathematical form of the production function requires consideration. A few basic theoretical issues were discussed in Part. II. The fucus there was on basic characteristics implicit in functional foms, some of which are independent of the data. The elasticity of substitution between factors, and the elasticity of output with respect to a factor-two obviously important production considerations-were discussed. The major point made was that though many consjerations of fonn could be obviated by caireful data transfomations (though this is certainly not true of all of these considerations), the researcher like myself has very littie guidance from colucational theory as to how to procced iy either direction.

To demonstrate the importance of this latter problem, there being little I could do about the others, part IV investigated several kinds of estimations with one sauple of data. Weighted regressions were used to give 30 production units (schools) equal weight, but to correct for variations in the qualities of the raw materials (pupils) as they entered the process. It had been pointed out in Part 1 that in fact this cannot be done with present data, and that the background variables therefore account for initial quality, continued background influence, cluring the production process, allocation of the highly averaged school resources within the production unit, and variable response to school resources. Estinates were given for a simple linear forn, for the simple linear plus interactions; the simple linear with quadratic tenns, a logarithmic transformation, and the simple lincar with both interactions and quadratic terms. Listimates of the partial derivatives of this last form, with respect to two school variables and a background variable (cvaluated at mean valucs) were significantly different from those of the simple linear form.

In addition, by presenting the equations for two different outputs, I have tricd to cantion the reader against draving conclusions from equations from one output only. Despite high correlations between these two outputs, the equations were different, inclucling different sets of both sclool and background variables, Sone major conclusions--such as the relative inpact of background and school variabies--would be the same from these two particular outputs. Bul since coducation is admittedly a multij-faceted product, one shourd be forewamed about acerpting or rejecting notions; based on just one of those facets.

I have tried not to weary the reader with argment about the triviality of the notion that bacheround exceeds school inputs in explaining output variance.

It should be clear that such a finding is not surprising, not depressing, and in short not inmortime. The ultimate efficacy of any program will be determined on its cost-effectiveness, that is, its ability to deliver output for dollars. For this calculation, estimates of the incroment to output from increasing inputs are necessary, and estimates of associated variance, of no inport. What was depressing was to find that the presumably better specificd equation reduced the estimates of the response of output to school inputs from the simple linear estimates. Thus accurate estimates of cost-effective policies rely heavily on accurate production function estimation. I have tried to stress how far we are from that goal.
last of all, I questioned the calculus by which even cost-effective decisions are made. it is on this point that I will end this paper. If "benefit" is calculated independent of who receives it, and if the national objective is to "maximize benefit," then policies which favor the already favored cruld easily be recommended. This has long been a problen in U. S. Office of Education plaming. For exanlple, if the returns to a program are calculated as the increment to iifetine carnings of the indivjduals recciving the benefits, discounted to the time of the program, then aid to graduate students will almost surely dominate aid to young children. Just the fact that the young children recejve no "bencfit" as calculated for many years lowers the value of that benefit according to these rules.

Since no such accoming mechanism would ever justify aid to young chithen, the office has lons, compartanemitized its objectives. It consjders aid to young chi ldren a desjderatom, and evaluates those prograns against each other, W?at. I am sugesting, is that even within a category such as. 'young
children," bonefits should not be comal wejghted. This is, in fact, the philosophy behind Title J of the 1965 Elementary and Secondary Education Act. Funds from this Act supposedly go to educationally deprived children in poverty settings. No comparisons are made with the benefits which would accrue to educationally favored children if they had access to these funds. That is well and good.

The same compartmentalization should be continucd in the actual administration of these funds. If the interactions are as I have found them, then nothing short of massive and well managed aid will show any success. If the expansion path of outputs is as I have suggested in Part III, then most of this moncy is going into schools which are not attempting to produce the outputs by which Title I is being evaluated. This dilemua could lead, at the moment, only to a longer discussion than I care to be involved in at this time. Some policy options are obvious: This moncy (or other money to the same children) should be directed outside of schools, in afternom and sumner prograns not under the charge of the school burcaucracy. Research and training are needed to supply methods and teachers specifically. geared for a particular, deprived, child population. Rewards need to be output oriented, without being so specific that other outputs are grossly sacrificed, or that only the output measure, not the output itself, is raisc ?.

It is not my place, at least not here, to discuss these options firther.

$3_{\text {Other }}$ ontputs mey well be sacrificed to achicve one-- that is the nature of the prohnction fratior. but some trateoffs are unacceplable. The output measure might he a vocalulay, spelling, ete., test. The output, horever, is vocabulay, spelling, etc. Trajning for the test is hardly worth rewarding.

A truly heroic effort at determining an eam. ..onal production function would carefully consider all the times and places in which a person acquires the skills which we wish to consider as outputs. Then--and only then--we could design programs which could be effective (and better yet, cost-effective) in producing those skills. To limit the investigation to currently administered public schools is perhaps the basic flaw, superceding all the others mentioned above, in the unrewarding efforts to cstimate cducational production functions.

1. Bowles, Samuel. "Towards an Elucational Production Function," paper delivered at the NBER Conference on Research in Incone and wealth, November, 1968.
2. \qquad - Educational Production Function, Report to the U. S. Office of Education, February, 1969.
3.

\longrightarrow, and Henry M. Levin. 'The Determinants of Scholastic Achieve-ment--An Appraisal of Sone Recent Eviderce," The Journal of Hunan Resources, Vol. 3, No. 1, Winter, 1968.
4. Bruncr, Jerome. Toward a Theory of Instruction, Belknap Press of Harvard University, 1966.
5. Burkhead, Jesse, with Thomas G. Fox and John V. Holland. Input and Output in Large-City High Schoo1s, Syracusc University Press, 1967.
6. Cain, Glen G., and Harold W. Watts. 'Problems in Making Policy Inferences from the Colenam Report," Anerican Sociological Review, 35, April, 1970; pp. 228-242.
7. Colcman, James S. , Frnest Q. Campocll, and others. Equality of Educational opportunity, U. S. office of Jducation, 015-38001, 1966.
8. Gutmrie, James W., Geonge B. KlcindorSer, Henry M. Jevin, an
Stout. Schonls and Jncquality, The Urban Coalition, 1969.
9. Hayes, benatd r., and Julith Gethor. "The School Year and Vacation: Wien the students Leem?", presented at the Eastern Sociological Association Comention, Aprit, 19G9.
Kain, Jolm F., and Jiric Hamshok. On the Value of fyuality of Educational Oportumity as a cuide tu Public policy. Prograll on Regional and Urbat licomonics, Disconseion Praper No. 36, Harvard University, Nay, 1968.
11. Katzman, Martin T. Nistribution and Production in a Big City Elcmentary School District, Mh.D. Dissertation, Yale University, 1967.
12. Kershaw, Joscph A., and Roland N. McKean. Systems Analysis and Education, RAND Corporation, Research Mcmorandum RM-2473-FF, 1959.
13. Levin, Hemry M. "A New Molel of School Effectiveness," in Do Teachers Make a Difference?, U. S. Office of Education, Bureau of Educational Personnć1 Development, 1970; pp. 55-78.
14. \qquad - Recruiting Teachers for Large-City Schools, Charles E. Mcrrill, 1970.
15. Michelson, Stephan. "Equal Protection and School Resources," Inequality in Education, Number 2, December, 1969.
16. \qquad . 'The Association of Teacher Resourceness with Children's Characteristics," in Do Teachers Make a Difference?, U. S. Office of Education, Department of Educational Personnel Development, 1970, pp. 120-1.68.
17. Mood, Alexander M., "Jo Teachers Make a Difference?" in Do Teachers Make a Difference?, U. S. Office of Education, Bureau of Educational Persomel llevelopment, 1970; pp. 1-24.
18. Owen, John. "The listribution of Jducational Resources in Large Anerican Cities," unjublished, Johns llopkins University Center. for the Study of the Social Organization of Schools, 1970.
19. \qquad - "The Allocation of Teaching Resources in Nacrican Public

School Systems," anpublished, Johns llopkins Universit.y Center for the Study of the Socia] Organization of Schools, 1970.

[^0]: 3his simple poind serens lilite apreciated. it conld be more costoffective, for cximple, for a phatice schood charged with getime. chitdren to

 conse, it might not be cont offorive for any one sehool to do this, since jt will stall haw dijdern ijthon pro-shool ouperience in their efencmary schools. Jor the system, hower, this: policy wund still be must efficiemt.)

[^1]:

[^2]: ${ }^{6}$ Bowles (1, footnote, p. 11) explains this as the requirement that "an increase in the quality of teachers be more effective on ch:jdren of well educated parents than on the ch:ldren of illiterate parents."

[^3]:

[^4]: ${ }^{5}$ The major question here is what if the student cance from a school not in the origine? sample? Should school-wide data be collected for that one child?

 Whe question read: "lluw many different schools have you gone to since you started the first gran ". The first poss, ible anshor to this question was: "Onc--onfy this school." only children who checked this answer remain in our data sanple.

[^5]: ${ }^{10}$ other foms for dre aere variande were experimented with, but in a binary onded classification a cariable demen exceptionally young children was not: sienificant, wheres the one for old children was. Thas this one binary variable sufficus.
 of this averaging, with some estimetes of tho kinds of observational crom it can illaply.

[^6]: ${ }^{21} 1_{\mathrm{By}}$ a similat argunent, shool managemem efficiency is likely to be

[^7]: ${ }^{21}$ Since meither cquation held constant the other output, the effects of increasine: resenrecs are addition bethern equations. This is, to he honest, an indication than the original coufficionts shond have becn est inated hy hore

[^8]: 28. Jhis offect is actumbly a function of the distributions of the two factors. We are selceling rambunly from teachers with more than of the two 3.7 years ex perience, and asking whether, on the arerage, these teachers have jower than 25.3, the current School $\# 79$ mem, on the Feachere test.
[^9]: ${ }^{29}$ This is a well-knom probability theoren that the cxpected value of a product is the product of the expected values only if the elements in the. product are wicorrelated.

[^10]: 30 The interaction between l:xperience and possessions in the leading Equation.

[^11]: ${ }^{31}$ Sec Michelson (16), Table 1.

[^12]: ${ }^{35}$ of course the preceding second degree polynonial did have an even lower partial derivative with respect to Teacher Test.
 ${ }^{36}$ Averaping oven schools, the arithmetice mean keadjng Score is 17.62. The geometric mean is 16.45 .

[^13]: *Signs indicate: + higher than simple lincar cṣtintate - Jower Chan simplo lincar estimate

